Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Negative flows of generalized KdV and mKdV hierarchies and their gauge-Miura transformations

dc.contributor.authorAdans, Ysla F. [UNESP]
dc.contributor.authorFrança, Guilherme
dc.contributor.authorGomes, José F. [UNESP]
dc.contributor.authorLobo, Gabriel V. [UNESP]
dc.contributor.authorZimerman, Abraham H. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of California
dc.date.accessioned2025-04-29T18:57:30Z
dc.date.issued2023-08-01
dc.description.abstractThe KdV hierarchy is a paradigmatic example of the rich mathematical structure underlying integrable systems and has far-reaching connections in several areas of theoretical physics. While the positive part of the KdV hierarchy is well known, in this paper we consider an affine Lie algebraic construction for its negative part. We show that the original Miura transformation can be extended to a gauge transformation that implies several new types of relations among the negative flows of the KdV and mKdV hierarchies. Contrary to the positive flows, such a “gauge-Miura” correspondence becomes degenerate whereby more than one negative mKdV model is mapped into a single negative KdV model. For instance, the sine-Gordon and another negative mKdV flow are mapped into a single negative KdV flow which inherits solutions of both former models. The gauge-Miura correspondence implies a rich degeneracy regarding solutions of these hierarchies. We obtain similar results for the generalized KdV and mKdV hierachies constructed with the affine Lie algebra sℓ̂ (r+ 1) . In this case the first negative mKdV flow corresponds to an affine Toda field theory and the gauge-Miura correspondence yields its KdV counterpart. In particular, we show explicitly a KdV analog of the Tzitzéica-Bullough-Dodd model. In short, we uncover a rich mathematical structure for the negative flows of integrable hierarchies obtaining novel relations and integrable systems.en
dc.description.affiliationInstitute of Theoretical Physics-IFT/UNESP, Rua Dr. Bento Teobaldo Ferraz 271, SP
dc.description.affiliationDepartment of Electrical Engineering and Computer Science University of California, 387 Soda Hall
dc.description.affiliationUnespInstitute of Theoretical Physics-IFT/UNESP, Rua Dr. Bento Teobaldo Ferraz 271, SP
dc.identifierhttp://dx.doi.org/10.1007/JHEP08(2023)160
dc.identifier.citationJournal of High Energy Physics, v. 2023, n. 8, 2023.
dc.identifier.doi10.1007/JHEP08(2023)160
dc.identifier.issn1029-8479
dc.identifier.scopus2-s2.0-85169096999
dc.identifier.urihttps://hdl.handle.net/11449/301208
dc.language.isoeng
dc.relation.ispartofJournal of High Energy Physics
dc.sourceScopus
dc.subjectIntegrable Field Theories
dc.subjectIntegrable Hierarchies
dc.subjectSolitons Monopoles and Instantons
dc.titleNegative flows of generalized KdV and mKdV hierarchies and their gauge-Miura transformationsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulopt

Arquivos