Logotipo do repositório
 

Publicação:
Orthogonal polynomials with respect to a family of Sobolev inner products on the unit circle

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The principal objective here is to look at some algebraic properties of the orthogonal polynomials Ψn (b,s,t) n with respect to the Sobolev inner product on the unit circle <f,g>S (b,s,t) = (1 − t) <f,g>μ(b) + t f(1) g(1) + s <f', g'>μ(b+1), where <f, g> μ(b) = τ(b)/2π∫2π 0 f(eiθ) g(eiθ) (eπ−θ)Im(b)(sin2(θ/2))Re(b)dθ. Here, Re(b) > −1/2, 0 ≤ t < 1, s > 0 and τ(b) is taken to be such that <1, 1>μ(b) = 1. We show that, for example, the monic Sobolev orthogonal polynomials Ψ(b,s,t) n satisfy the recurrence Ψ(b,s,t) n (z)−β(b,s,t) n Ψ(b,s,t) n−1 (z) = Φ(b,t) n (z), n ≥ 1, where Φ(b,t) n are the monic orthogonal polynomials with respect to the inner product <f, g>μ(b,t) = (1 − t) <f, g> μ(b) + t f(1) g(1). Some related bounds and asymptotic properties are also given.

Descrição

Palavras-chave

Orthogonal polynomials on the unit circle, Para-orthogonal polynomials, Positive chain sequences, Sobolev orthogonal polynomials on the unit circle

Idioma

Inglês

Como citar

Proceedings of the American Mathematical Society, v. 144, n. 3, p. 1129-1143, 2016.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação