Publicação: Orthogonal polynomials with respect to a family of Sobolev inner products on the unit circle
Carregando...
Arquivos
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
The principal objective here is to look at some algebraic properties of the orthogonal polynomials Ψn (b,s,t) n with respect to the Sobolev inner product on the unit circle <f,g>S (b,s,t) = (1 − t) <f,g>μ(b) + t f(1) g(1) + s <f', g'>μ(b+1), where <f, g> μ(b) = τ(b)/2π∫2π 0 f(eiθ) g(eiθ) (eπ−θ)Im(b)(sin2(θ/2))Re(b)dθ. Here, Re(b) > −1/2, 0 ≤ t < 1, s > 0 and τ(b) is taken to be such that <1, 1>μ(b) = 1. We show that, for example, the monic Sobolev orthogonal polynomials Ψ(b,s,t) n satisfy the recurrence Ψ(b,s,t) n (z)−β(b,s,t) n Ψ(b,s,t) n−1 (z) = Φ(b,t) n (z), n ≥ 1, where Φ(b,t) n are the monic orthogonal polynomials with respect to the inner product <f, g>μ(b,t) = (1 − t) <f, g> μ(b) + t f(1) g(1). Some related bounds and asymptotic properties are also given.
Descrição
Palavras-chave
Orthogonal polynomials on the unit circle, Para-orthogonal polynomials, Positive chain sequences, Sobolev orthogonal polynomials on the unit circle
Idioma
Inglês
Como citar
Proceedings of the American Mathematical Society, v. 144, n. 3, p. 1129-1143, 2016.