On Elliptic equations with singular potentials and nonlinear boundary conditions
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Arquivos
Fontes externas
Fontes externas
Resumo
We consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods.
Descrição
Palavras-chave
Elliptic equations, Existence and nonexistence problems, Nonlinear boundary conditions, Singular potentials
Idioma
Inglês
Citação
Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018.





