Logotipo do repositório
 

Publicação:
Digit systems over commutative rings

dc.contributor.authorScheicher, Klaus
dc.contributor.authorSurer, Paul [UNESP]
dc.contributor.authorThuswaldner, Joerg M.
dc.contributor.authorVan de Woestijne, Christiaan E.
dc.contributor.institutionUniv Nat Resources & Appl Life Sci
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Leoben
dc.date.accessioned2015-03-18T15:55:34Z
dc.date.available2015-03-18T15:55:34Z
dc.date.issued2014-09-01
dc.description.abstractLet epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context.en
dc.description.affiliationUniv Nat Resources & Appl Life Sci, Inst Math, A-1180 Vienna, Austria
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Leoben, Chair Math & Stat, A-8700 Leoben, Austria
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipAustrian Science Foundation (FWF)
dc.description.sponsorshipnational research network "Analytic combinatorics and probabilistic number theory"
dc.description.sponsorshipIdAustrian Science Foundation (FWF)S9606
dc.description.sponsorshipIdAustrian Science Foundation (FWF)S9610
dc.description.sponsorshipIdnational research network Analytic combinatorics and probabilistic number theoryFWF-S96
dc.format.extent1459-1483
dc.identifierhttp://dx.doi.org/10.1142/S1793042114500389
dc.identifier.citationInternational Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 10, n. 6, p. 1459-1483, 2014.
dc.identifier.doi10.1142/S1793042114500389
dc.identifier.issn1793-0421
dc.identifier.urihttp://hdl.handle.net/11449/117220
dc.identifier.wosWOS:000341012700008
dc.language.isoeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal Of Number Theory
dc.relation.ispartofjcr0.536
dc.relation.ispartofsjr0,865
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectCanonical number systemsen
dc.subjectshift radix systemsen
dc.subjectdigit systemsen
dc.titleDigit systems over commutative ringsen
dc.typeArtigo
dcterms.rightsHolderWorld Scientific Publ Co Pte Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0001-5308-762X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos