Logotipo do repositório
 

Publicação:
Improving the thermostability of xylanase a from bacillus subtilis by combining bioinformatics and electrostatic interactions optimization

dc.contributor.authorNgo, Khoa
dc.contributor.authorDa Silva, Fernando Bruno [UNESP]
dc.contributor.authorLeite, Vitor B. P.
dc.contributor.authorContessoto, Vinícius G.
dc.contributor.authorOnuchic, José N.
dc.contributor.institutionRice University
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Houston
dc.date.accessioned2021-06-25T11:00:21Z
dc.date.available2021-06-25T11:00:21Z
dc.date.issued2021-05-06
dc.description.abstractThe rational improvement of the enzyme catalytic activity is one of the most significant challenges in biotechnology. Most conventional strategies used to engineer enzymes involve selecting mutations to increase their thermostability. Determining good criteria for choosing these substitutions continues to be a challenge. In this work, we combine bioinformatics, electrostatic analysis, and molecular dynamics to predict beneficial mutations that may improve the thermostability of XynA from Bacillus subtilis. First, the Tanford-Kirkwood surface accessibility method is used to characterize each ionizable residue contribution to the protein native state stability. Residues identified to be destabilizing were mutated with the corresponding residues determined by the consensus or ancestral sequences at the same locations. Five mutants (K99T/N151D, K99T, S31R, N151D, and K154A) were investigated and compared with 12 control mutants derived from experimental approaches from the literature. Molecular dynamics results show that the mutants exhibited folding temperatures in the order K99T > K99T/N151D > S31R > N151D > WT > K154A. The combined approaches employed provide an effective strategy for low-cost enzyme optimization needed for large-scale biotechnological and medical applications.en
dc.description.affiliationCenter for Theoretical Biological Physics Rice University
dc.description.affiliationDepartamento de Física Instituto de Biociências Letras e Ciencias Exatas Unesp-Univ. Estadual Paulista
dc.description.affiliationDepartment of Physics and Astronomy Center for Theoretical Biological Physics Rice University
dc.description.affiliationDepartment of Physics University of Houston
dc.description.affiliationUnespDepartamento de Física Instituto de Biociências Letras e Ciencias Exatas Unesp-Univ. Estadual Paulista
dc.format.extent4359-4367
dc.identifierhttp://dx.doi.org/10.1021/acs.jpcb.1c01253
dc.identifier.citationJournal of Physical Chemistry B, v. 125, n. 17, p. 4359-4367, 2021.
dc.identifier.doi10.1021/acs.jpcb.1c01253
dc.identifier.issn1520-5207
dc.identifier.issn1520-6106
dc.identifier.scopus2-s2.0-85106144264
dc.identifier.urihttp://hdl.handle.net/11449/207747
dc.language.isoeng
dc.relation.ispartofJournal of Physical Chemistry B
dc.sourceScopus
dc.titleImproving the thermostability of xylanase a from bacillus subtilis by combining bioinformatics and electrostatic interactions optimizationen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentFísica - IBILCEpt

Arquivos