Logotipo do repositório
 

Publicação:
Use of ultraviolet-visible spectrophotometry associated with artificial neural networks as an alternative for determining the water quality index

dc.contributor.authorAlves, Edson Marcelino [UNESP]
dc.contributor.authorRodrigues, Ramon Juliano [UNESP]
dc.contributor.authorCorrea, Caroline dos Santos [UNESP]
dc.contributor.authorFidemann, Tiago [UNESP]
dc.contributor.authorRocha, Jose Celso [UNESP]
dc.contributor.authorLemos Buzzo, Jose Leonel [UNESP]
dc.contributor.authorNeto, Pedro de Oliva [UNESP]
dc.contributor.authorFernandez Nunez, Eutimio Gustavo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2018-11-26T17:51:32Z
dc.date.available2018-11-26T17:51:32Z
dc.date.issued2018-06-01
dc.description.abstractThe water quality index (WQI) is an important tool for water resource management and planning. However, it has major disadvantages: the generation of chemical waste, is costly, and time-consuming. In order to overcome these drawbacks, we propose to simplify this index determination by replacing traditional analytical methods with ultraviolet-visible (UV-Vis) spectrophotometry associated with artificial neural network (ANN). A total of 100 water samples were collected from two rivers located in Assis, SP, Brazil and calculated the WQI by the conventional method. UV-Vis spectral analyses between 190 and 800 nm were also performed for each sample followed by principal component analysis (PCA) aiming to reduce the number of variables. The scores of the principal components were used as input to calibrate a three-layer feed-forward neural network. Output layer was defined by the WQI values. The modeling efforts showed that the optimal ANN architecture was 19-16-1, trainlm as training function, root-mean-square error (RMSE) 0.5813, determination coefficient between observed and predicted values (R-2) of 0.9857 (p < 0.0001), and mean absolute percentage error (MAPE) of 0.57% +/- 0.51%. The implications of this work's results open up the possibility to use a portable UV-Vis spectrophotometer connected to a computer to predict the WQI in places where there is no required infrastructure to determine the WQI by the conventional method as well as to monitor water body's in real time.en
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Biol, Julio de Mesquita Filho Campus Assis, BR-19806900 Assis, SP, Brazil
dc.description.affiliationUniv Fed ABC, CCNH, Avenida Estados 5001, BR-09210580 Santo Andre, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Biol, Julio de Mesquita Filho Campus Assis, BR-19806900 Assis, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFaculdade de Ciencias e Letras de Assis
dc.description.sponsorshipIdFAPESP: 2014/26025-2
dc.format.extent15
dc.identifierhttp://dx.doi.org/10.1007/s10661-018-6702-7
dc.identifier.citationEnvironmental Monitoring And Assessment. Dordrecht: Springer, v. 190, n. 6, 15 p., 2018.
dc.identifier.doi10.1007/s10661-018-6702-7
dc.identifier.fileWOS000431724500010.pdf
dc.identifier.issn0167-6369
dc.identifier.lattes4638952263502744
dc.identifier.lattes4879415882379593
dc.identifier.orcid0000-0001-9378-9036
dc.identifier.orcid0000-0002-7699-1344
dc.identifier.urihttp://hdl.handle.net/11449/164169
dc.identifier.wosWOS:000431724500010
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofEnvironmental Monitoring And Assessment
dc.relation.ispartofsjr0,589
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectWater quality index
dc.subjectUV-Vis spectrophotometry
dc.subjectArtificial neural networks
dc.subjectPrincipal component analysis
dc.subjectWater pollution
dc.subjectWater analysis
dc.titleUse of ultraviolet-visible spectrophotometry associated with artificial neural networks as an alternative for determining the water quality indexen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.lattes4638952263502744[7]
unesp.author.lattes4879415882379593[2]
unesp.author.orcid0000-0002-2800-392X[8]
unesp.author.orcid0000-0001-9378-9036[7]
unesp.author.orcid0000-0002-7699-1344[2]
unesp.departmentCiências Biológicas - FCLASpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000431724500010.pdf
Tamanho:
690.41 KB
Formato:
Adobe Portable Document Format
Descrição: