Logotipo do repositório
 

Publicação:
Intelligent control of a quadrotor with proximal policy optimization reinforcement learning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso restrito

Resumo

Aerial platforms, such as quadrotors, are inherently unstable systems. Generally, the task of stabilizing the flight of a quadrotor is approached by techniques based on classic and modern control algorithms. However, recent model-free reinforcement learning algorithms have been successfully used for controlling drones. In this work we show the feasibility of applying reinforcement learning methods to optimize a stochastic control policy (during training), in order to perform the position control of the 'model-free' quadrotor. This process is achieved while maintaining a good sampling efficiency, allowing fast convergence even when using computationally expensive off-The-shelf simulators for robotics and without the necessity of any additional exploration strategy. We used the Proximal Policy Optimization (PPO) algorithm to make the agent learn a reliable control policy. The experiments for the resultant intelligent controller were performed using the V-REP simulator and the Vortex physics engine.

Descrição

Palavras-chave

Control, Proximal Policy Optimization, Quadrotor, Reinforcement Learning

Idioma

Inglês

Como citar

Proceedings - 15th Latin American Robotics Symposium, 6th Brazilian Robotics Symposium and 9th Workshop on Robotics in Education, LARS/SBR/WRE 2018, p. 509-514.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação