Publicação: Intelligent control of a quadrotor with proximal policy optimization reinforcement learning
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso restrito
Resumo
Aerial platforms, such as quadrotors, are inherently unstable systems. Generally, the task of stabilizing the flight of a quadrotor is approached by techniques based on classic and modern control algorithms. However, recent model-free reinforcement learning algorithms have been successfully used for controlling drones. In this work we show the feasibility of applying reinforcement learning methods to optimize a stochastic control policy (during training), in order to perform the position control of the 'model-free' quadrotor. This process is achieved while maintaining a good sampling efficiency, allowing fast convergence even when using computationally expensive off-The-shelf simulators for robotics and without the necessity of any additional exploration strategy. We used the Proximal Policy Optimization (PPO) algorithm to make the agent learn a reliable control policy. The experiments for the resultant intelligent controller were performed using the V-REP simulator and the Vortex physics engine.
Descrição
Palavras-chave
Control, Proximal Policy Optimization, Quadrotor, Reinforcement Learning
Idioma
Inglês
Como citar
Proceedings - 15th Latin American Robotics Symposium, 6th Brazilian Robotics Symposium and 9th Workshop on Robotics in Education, LARS/SBR/WRE 2018, p. 509-514.