Logotipo do repositório
 

Publicação:
Identifying important characteristics in the KDD99 intrusion detection dataset by feature selection using a hybrid approach

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Intrusion detection datasets play a key role in fine tuning Intrusion Detection Systems (IDSs). Using such datasets one can distinguish between regular and anomalous behavior of a given node in the network. To build this dataset is not straightforward, though, as only the most significant features of the collected data for detecting the node's behavior should be considered. We propose in this paper a technique for selecting relevant features out of KDD99 using a hybrid approach toward an optimal subset of features. Unlike existing work that only detect attack or no attack conditions, our approach efficiently identifies which sort of attack each register in the dataset refers to. The evaluation results show that the optimized subset of features can improve performance of typical IDSs. © 2009 IEEE.

Descrição

Palavras-chave

Hybrid approach, Information gain ratio, K-means, KDD99. feature selection

Idioma

Inglês

Como citar

ICT 2010: 2010 17th International Conference on Telecommunications, p. 552-558.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação