Repository logo
 

Publication:
Transition form factors: gamma* plus p -> Delta(1232), Delta(1600)

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

Electroproduction form factors describing the gamma* p -> Delta(+)(1232), Delta(+)(1600) transitions are computed using a fully dynamical diquark-quark approximation to the Poincare-covariant three-body bound-state problem in relativistic quantum field theory. In this approach, the Delta(1600) is an analogue of the Roper resonance in the nucleon sector, appearing as the simplest radial excitation of the Delta(1232). Precise measurements of the gamma* p -> Delta(+)(1232) transition already exist on 0 <= Q(2) less than or similar to 8 GeV2, and the calculated results compare favorably with the data outside the meson-cloud domain. The predictions for the gamma* p -> Delta(+)(1600) magnetic dipole and electric quadrupole transition form factors are consistent with the empirical values at the real photon point, and extend to Q(2) approximate to 6m(p)(2), enabling a meaningful direct comparison with experiment once analysis of existing data is completed. In both cases, the electric quadrupole form factor is particularly sensitive to deformation of the Delta-baryons. Interestingly, while the gamma* p -> Delta(+)(1232) transition form factors are larger in magnitude than those for gamma* p -> Delta(+)(1600) in some neighborhood of the real photon point, this ordering is reversed on Q(2) greater than or similar to 2m(p)(2), suggesting that the gamma* p -> Delta(+)(1600) transition is more localized in configuration space.

Description

Keywords

Language

English

Citation

Physical Review D. College Pk: Amer Physical Soc, v. 100, n. 3, 13 p., 2019.

Related itens

Units

Departments

Undergraduate courses

Graduate programs