Publicação:
Multi-scale lacunarity as an alternative to quantify and diagnose the behavior of prostate cancer

dc.contributor.authorNeves, L. A. [UNESP]
dc.contributor.authorNascimento, M. Z.
dc.contributor.authorOliveira, D. L. L.
dc.contributor.authorMartins, A. S.
dc.contributor.authorGodoy, M. F.
dc.contributor.authorArruda, P. F. F.
dc.contributor.authorDe Santi Neto, D.
dc.contributor.authorMachado, J. M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionFed Inst Tritingulo Mineiro IFTM
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionFundacao Fac Reg Med FUNFARME
dc.date.accessioned2015-03-18T15:53:26Z
dc.date.available2015-03-18T15:53:26Z
dc.date.issued2014-09-01
dc.description.abstractProstate cancer is a serious public health problem accounting for up to 30% of clinical tumors in men. The diagnosis of this disease is made with clinical, laboratorial and radiological exams, which may indicate the need for transrectal biopsy. Prostate biopsies are discerningly evaluated by pathologists in an attempt to determine the most appropriate conduct. This paper presents a set of techniques for identifying and quantifying regions of interest in prostatic images. Analyses were performed using multi-scale lacunarity and distinct classification methods: decision tree, support vector machine and polynomial classifier. The performance evaluation measures were based on area under the receiver operating characteristic curve (AUC). The most appropriate region for distinguishing the different tissues (normal, hyperplastic and neoplasic) was defined: the corresponding lacunarity values and a rule's model were obtained considering combinations commonly explored by specialists in clinical practice. The best discriminative values (AUC) were 0.906, 0.891 and 0.859 between neoplasic versus normal, neoplasic versus hyperplastic and hyperplastic versus normal groups, respectively. The proposed protocol offers the advantage of making the findings comprehensible to pathologists. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.description.affiliationSao Paulo State Univ UNESP, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationFed Univ Uberlandia UFU, Fac Computat FACOM, Uberlandia, MG, Brazil
dc.description.affiliationFed Univ ABC UFABC, Ctr Math Comp & Cognit, Santo Andre, SP, Brazil
dc.description.affiliationFed Inst Tritingulo Mineiro IFTM, Ituiutaba, MG, Brazil
dc.description.affiliationSao Jose do Rio Preto Med Sch, Transdisciplinaly Ctr Study Chaos & Complex NUTEC, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationFundacao Fac Reg Med FUNFARME, Base Hosp, Kidney Transplant Surg Serv, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationFundacao Fac Reg Med FUNFARME, Base Hosp, Serv Anat Pathol, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipPROPe/UNESP (Pro-Reitoria de Pesquisa/UNESP)
dc.format.extent5017-5029
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2014.02.048
dc.identifier.citationExpert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 41, n. 11, p. 5017-5029, 2014.
dc.identifier.doi10.1016/j.eswa.2014.02.048
dc.identifier.issn0957-4174
dc.identifier.lattes2139053814879312
dc.identifier.urihttp://hdl.handle.net/11449/116518
dc.identifier.wosWOS:000336191800002
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofExpert Systems With Applications
dc.relation.ispartofjcr3.768
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectMulti-scale lacunarityen
dc.subjectProstate canceren
dc.subjectSegmentationen
dc.subjectRule's modelen
dc.subjectPattern recognitionen
dc.titleMulti-scale lacunarity as an alternative to quantify and diagnose the behavior of prostate canceren
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos