Logotipo do repositório
 

Publicação:
Spatial Pattern Recognition of Urban Sprawl Using a Geographically Weighted Regression for Spatial Electric Load Forecasting

dc.contributor.authorMelo, J. D. [UNESP]
dc.contributor.authorPadilha-Feltrin, A. [UNESP]
dc.contributor.authorCarreno, E. M.
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionState Univ West Parana
dc.date.accessioned2018-11-26T16:48:29Z
dc.date.available2018-11-26T16:48:29Z
dc.date.issued2015-01-01
dc.description.abstractDistribution utilities must perform forecasts in spatial manner to determine the locations that could increase their electric demand. In general, these forecasts are made in the urban area, without regard to the preferences of the inhabitants to develop its activities outside the city boundary. This may lead to errors in decision making of the distribution network expansion planning. In order to identify such preferences, this paper presents a geographically weighted regression that explore spatial patterns to determines the probability of rural regions become urban zones, as part of the urban sprawl. The proposed method is applied in a Brazilian midsize city, showing that the use of the calculated probabilities decreases the global error of spatial load forecasting in 6.5% of the load growth.en
dc.description.affiliationUniv State Sao Paulo, UNESP, Dept Elect Engn, Ilha Solteira, Brazil
dc.description.affiliationState Univ West Parana, UNIOESTE, Ctr Engn & Math Sci, Iguacu, Brazil
dc.description.affiliationUnespUniv State Sao Paulo, UNESP, Dept Elect Engn, Ilha Solteira, Brazil
dc.format.extent5
dc.identifier.citation2015 18th International Conference On Intelligent System Application To Power Systems (isap). New York: Ieee, 5 p., 2015.
dc.identifier.urihttp://hdl.handle.net/11449/161755
dc.identifier.wosWOS:000380395400024
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2015 18th International Conference On Intelligent System Application To Power Systems (isap)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDistribution network planning
dc.subjectgeographically weighted regression
dc.subjectspatial regression
dc.subjectspatial electric load forecasting
dc.titleSpatial Pattern Recognition of Urban Sprawl Using a Geographically Weighted Regression for Spatial Electric Load Forecastingen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes3886842168147059[2]
unesp.author.orcid0000-0001-6495-440X[2]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos