Logo do repositório

Estimating the mechanical competence parameter of the trabecular bone: A neural network approach

dc.contributor.authorFilletti, Érica Regina [UNESP]
dc.contributor.authorRoque, Waldir Leite
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal da Paraíba (UFPB)
dc.date.accessioned2018-12-11T17:04:49Z
dc.date.available2018-12-11T17:04:49Z
dc.date.issued2016-06-01
dc.description.abstractIntroduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.en
dc.description.affiliationDepartamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro Quitandinha
dc.description.affiliationDepartamento de Computação Científica Centro de Informática Universidade Federal da Paraíba - UFPB
dc.description.affiliationUnespDepartamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro Quitandinha
dc.format.extent137-143
dc.identifierhttp://dx.doi.org/10.1590/2446-4740.05615
dc.identifier.citationRevista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016.
dc.identifier.doi10.1590/2446-4740.05615
dc.identifier.fileS2446-47402016000200137.pdf
dc.identifier.issn1984-7742
dc.identifier.issn1517-3151
dc.identifier.scieloS2446-47402016000200137
dc.identifier.scopus2-s2.0-84982291660
dc.identifier.urihttp://hdl.handle.net/11449/173359
dc.language.isoeng
dc.relation.ispartofRevista Brasileira de Engenharia Biomedica
dc.relation.ispartofsjr0,179
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.subjectArtificial neural network
dc.subjectMachine learning
dc.subjectMechanical competence
dc.subjectOsteoporosis
dc.subjectTrabecular bone
dc.titleEstimating the mechanical competence parameter of the trabecular bone: A neural network approachen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S2446-47402016000200137.pdf
Tamanho:
1.55 MB
Formato:
Adobe Portable Document Format