Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
| dc.contributor.author | Filletti, Érica Regina [UNESP] | |
| dc.contributor.author | Roque, Waldir Leite | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.contributor.institution | Universidade Federal da Paraíba (UFPB) | |
| dc.date.accessioned | 2018-12-11T17:04:49Z | |
| dc.date.available | 2018-12-11T17:04:49Z | |
| dc.date.issued | 2016-06-01 | |
| dc.description.abstract | Introduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP. | en |
| dc.description.affiliation | Departamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro Quitandinha | |
| dc.description.affiliation | Departamento de Computação Científica Centro de Informática Universidade Federal da Paraíba - UFPB | |
| dc.description.affiliationUnesp | Departamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro Quitandinha | |
| dc.format.extent | 137-143 | |
| dc.identifier | http://dx.doi.org/10.1590/2446-4740.05615 | |
| dc.identifier.citation | Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016. | |
| dc.identifier.doi | 10.1590/2446-4740.05615 | |
| dc.identifier.file | S2446-47402016000200137.pdf | |
| dc.identifier.issn | 1984-7742 | |
| dc.identifier.issn | 1517-3151 | |
| dc.identifier.scielo | S2446-47402016000200137 | |
| dc.identifier.scopus | 2-s2.0-84982291660 | |
| dc.identifier.uri | http://hdl.handle.net/11449/173359 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Revista Brasileira de Engenharia Biomedica | |
| dc.relation.ispartofsjr | 0,179 | |
| dc.rights.accessRights | Acesso aberto | pt |
| dc.source | Scopus | |
| dc.subject | Artificial neural network | |
| dc.subject | Machine learning | |
| dc.subject | Mechanical competence | |
| dc.subject | Osteoporosis | |
| dc.subject | Trabecular bone | |
| dc.title | Estimating the mechanical competence parameter of the trabecular bone: A neural network approach | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | bc74a1ce-4c4c-4dad-8378-83962d76c4fd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | bc74a1ce-4c4c-4dad-8378-83962d76c4fd | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara | pt |
| unesp.department | Físico-Química - IQAR | pt |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- S2446-47402016000200137.pdf
- Tamanho:
- 1.55 MB
- Formato:
- Adobe Portable Document Format
