NON-PERIODIC BIFURCATIONS FOR SURFACE DIFFEOMORPHISMS
Carregando...
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Mathematical Soc
Tipo
Artigo
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
We prove that a positive probability subset of the boundary of the set of hyperbolic (Axiom A) surface diffeomorphisms with no cycles H is constituted by Kupka-Smale diffeomorphisms: all periodic points are hyperbolic and their invariant manifolds intersect transversally. Lack of hyperbolicity arises from the presence of a tangency between a stable manifold and an unstable manifold, one of which is not associated to a periodic point. All these diffeomorphisms that we construct lie on the boundary of the same connected component of H.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Transactions Of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 367, n. 12, p. 8279-8300, 2015.




