Publicação:
EFFICIENT FAULT LOCATION IN UNDERGROUND DISTRIBUTION SYSTEMS THROUGH OPTIMUM-PATH FOREST

Nenhuma Miniatura disponível

Data

2012-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Taylor & Francis Inc

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Applied Artificial Intelligence. Philadelphia: Taylor & Francis Inc, v. 26, n. 5, p. 503-515, 2012.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação