Logotipo do repositório
 

Publicação:
Hyperbolic Geometrically Uniform Codes and Ungerboeck Partitioning on the Double Torus

dc.contributor.authorGomes, Eduardo Michel Vieira
dc.contributor.authorde Carvalho, Edson Donizete [UNESP]
dc.contributor.authorMartins, Carlos Alexandre Ribeiro
dc.contributor.authorSoares, Waldir Silva
dc.contributor.authorda Silva, Eduardo Brandani
dc.contributor.institutionUTFPR
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Maringá (UEM)
dc.date.accessioned2022-04-29T08:41:22Z
dc.date.available2022-04-29T08:41:22Z
dc.date.issued2022-03-01
dc.description.abstractCurrent research builds labelings for geometrically uniform codes on the double torus through tiling groups. At least one labeling group was provided for all of the 11 regular tessellations on the double torus, derived from triangular Fuchsian groups, as well as extensions of these labeling groups to generate new codes. An important consequence is that such techniques can be used to label geometrically uniform codes on surfaces with greater genera. Furthermore, partitioning chains are constructed into geometrically uniform codes using soluble groups as labeling, which in some cases results in an Ungerboeck partitioning for the surface. As a result of these constructions, it is demonstrated that, as in Euclidean spaces, modulation and encoding can be combined in a single step in hyperbolic space.en
dc.description.affiliationDepartment of Mathematics Campus de Francisco Beltrão Universidade Técnica Federal do Paraná UTFPR, Linha Santa Bárbara s/n
dc.description.affiliationDepartment of Mathematics Câmpus de Ilha Solteira Universidade Estadual Paulista UNESP, Av. Brasil Sul, 56
dc.description.affiliationDepartment of Mathematics Campus de Pato BrancoUTFPR Universidade Técnica Federal do Paraná UTFPR, Via do Conhecimento, s/n-KM 01-Fraron
dc.description.affiliationDepartment of Mathematics Universidade Estadual de Maringá UEM, Av. Colombo 5790
dc.description.affiliationUnespDepartment of Mathematics Câmpus de Ilha Solteira Universidade Estadual Paulista UNESP, Av. Brasil Sul, 56
dc.identifierhttp://dx.doi.org/10.3390/sym14030449
dc.identifier.citationSymmetry, v. 14, n. 3, 2022.
dc.identifier.doi10.3390/sym14030449
dc.identifier.issn2073-8994
dc.identifier.scopus2-s2.0-85127305081
dc.identifier.urihttp://hdl.handle.net/11449/230651
dc.language.isoeng
dc.relation.ispartofSymmetry
dc.sourceScopus
dc.subjectdouble torus
dc.subjectFuchsian groups
dc.subjectgeometrically uniform codes
dc.subjecthyperbolic geometry
dc.subjectsignal constellations
dc.subjectUngerboeck partitioning
dc.titleHyperbolic Geometrically Uniform Codes and Ungerboeck Partitioning on the Double Torusen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentMatemática - FEISpt

Arquivos