Publicação: Hyperbolic Geometrically Uniform Codes and Ungerboeck Partitioning on the Double Torus
dc.contributor.author | Gomes, Eduardo Michel Vieira | |
dc.contributor.author | de Carvalho, Edson Donizete [UNESP] | |
dc.contributor.author | Martins, Carlos Alexandre Ribeiro | |
dc.contributor.author | Soares, Waldir Silva | |
dc.contributor.author | da Silva, Eduardo Brandani | |
dc.contributor.institution | UTFPR | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Estadual de Maringá (UEM) | |
dc.date.accessioned | 2022-04-29T08:41:22Z | |
dc.date.available | 2022-04-29T08:41:22Z | |
dc.date.issued | 2022-03-01 | |
dc.description.abstract | Current research builds labelings for geometrically uniform codes on the double torus through tiling groups. At least one labeling group was provided for all of the 11 regular tessellations on the double torus, derived from triangular Fuchsian groups, as well as extensions of these labeling groups to generate new codes. An important consequence is that such techniques can be used to label geometrically uniform codes on surfaces with greater genera. Furthermore, partitioning chains are constructed into geometrically uniform codes using soluble groups as labeling, which in some cases results in an Ungerboeck partitioning for the surface. As a result of these constructions, it is demonstrated that, as in Euclidean spaces, modulation and encoding can be combined in a single step in hyperbolic space. | en |
dc.description.affiliation | Department of Mathematics Campus de Francisco Beltrão Universidade Técnica Federal do Paraná UTFPR, Linha Santa Bárbara s/n | |
dc.description.affiliation | Department of Mathematics Câmpus de Ilha Solteira Universidade Estadual Paulista UNESP, Av. Brasil Sul, 56 | |
dc.description.affiliation | Department of Mathematics Campus de Pato BrancoUTFPR Universidade Técnica Federal do Paraná UTFPR, Via do Conhecimento, s/n-KM 01-Fraron | |
dc.description.affiliation | Department of Mathematics Universidade Estadual de Maringá UEM, Av. Colombo 5790 | |
dc.description.affiliationUnesp | Department of Mathematics Câmpus de Ilha Solteira Universidade Estadual Paulista UNESP, Av. Brasil Sul, 56 | |
dc.identifier | http://dx.doi.org/10.3390/sym14030449 | |
dc.identifier.citation | Symmetry, v. 14, n. 3, 2022. | |
dc.identifier.doi | 10.3390/sym14030449 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.scopus | 2-s2.0-85127305081 | |
dc.identifier.uri | http://hdl.handle.net/11449/230651 | |
dc.language.iso | eng | |
dc.relation.ispartof | Symmetry | |
dc.source | Scopus | |
dc.subject | double torus | |
dc.subject | Fuchsian groups | |
dc.subject | geometrically uniform codes | |
dc.subject | hyperbolic geometry | |
dc.subject | signal constellations | |
dc.subject | Ungerboeck partitioning | |
dc.title | Hyperbolic Geometrically Uniform Codes and Ungerboeck Partitioning on the Double Torus | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.department | Matemática - FEIS | pt |