Logo do repositório
 

Using machine learning to compress the matter transfer function T (k)

dc.contributor.authorOrjuela-Quintana, J. Bayron
dc.contributor.authorNesseris, Savvas
dc.contributor.authorCardona, Wilmar [UNESP]
dc.contributor.institutionCiudad Universitaria Meléndez
dc.contributor.institutionUniversidad Autonóma de Madrid
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:54:06Z
dc.date.available2023-07-29T13:54:06Z
dc.date.issued2023-04-15
dc.description.abstractThe linear matter power spectrum P(k,z) connects theory with large scale structure observations in cosmology. Its scale dependence is entirely encoded in the matter transfer function T(k), which can be computed numerically by Boltzmann solvers, and can also be computed semianalytically by using fitting functions such as the well-known Bardeen-Bond-Kaiser-Szalay (BBKS) and Eisenstein-Hu (EH) formulas. However, both the BBKS and EH formulas have some significant drawbacks. On the one hand, although BBKS is a simple expression, it is only accurate up to 10%, which is well above the 1% precision goal of forthcoming surveys. On the other hand, while EH is as accurate as required by upcoming experiments, it is a rather long and complicated expression. Here, we use the genetic algorithms (GAs), a particular machine learning technique, to derive simple and accurate fitting formulas for the transfer function T(k). When the effects of massive neutrinos are also considered, our expression slightly improves over the EH formula, while being notably shorter in comparison.en
dc.description.affiliationDepartamento de Física Universidad Del Valle Ciudad Universitaria Meléndez
dc.description.affiliationInstituto de Física Teórica UAM-CSIC Universidad Autonóma de Madrid, Cantoblanco
dc.description.affiliationICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista
dc.description.affiliationUnespICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.107.083520
dc.identifier.citationPhysical Review D, v. 107, n. 8, 2023.
dc.identifier.doi10.1103/PhysRevD.107.083520
dc.identifier.issn2470-0029
dc.identifier.issn2470-0010
dc.identifier.scopus2-s2.0-85158875982
dc.identifier.urihttp://hdl.handle.net/11449/248801
dc.language.isoeng
dc.relation.ispartofPhysical Review D
dc.sourceScopus
dc.titleUsing machine learning to compress the matter transfer function T (k)en
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-5090-2860 0000-0001-5090-2860[1]
unesp.author.orcid0000-0001-5142-5613[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos