Repository logo
 

Publication:
Account classification in online social networks with LBCA and wavelets

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

We developed a wavelet-based approach for account classification that detects textual dissemination by bots on an Online Social Network (OSN). Its main objective is to match account patterns with humans, cyborgs or robots, improving the existing algorithms that automatically detect frauds. With a computational cost suitable for OSNs, the proposed approach analyses the distribution of key terms. The descriptors, a wavelet-based feature vector for each user's account, work in conjunction with a new weighting scheme, called Lexicon Based Coefficient Attenuation (LBCA) and serve as inputs to one of the classifiers tested: Random Forests and Multilayer Perceptrons. Experiments were performed using a set of posts crawled during the 2014 FIFA World Cup, obtaining accuracies within the range from 94 to 100%.

Description

Keywords

Account classification, Multilayer perceptrons, Online social networks, Random forests, Wavelets

Language

English

Citation

Information Sciences, v. 332, p. 72-83.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs