Publicação: ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS
dc.contributor.author | Thomazella, R. [UNESP] | |
dc.contributor.author | Castanho, J. E. [UNESP] | |
dc.contributor.author | Dotto, F. R. L. [UNESP] | |
dc.contributor.author | Rodrigues Junior, O. P. | |
dc.contributor.author | Rosa, G. H. [UNESP] | |
dc.contributor.author | Marana, A. N. [UNESP] | |
dc.contributor.author | Papa, J. P. [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Corumba Concessoes SA | |
dc.date.accessioned | 2019-10-04T12:32:39Z | |
dc.date.available | 2019-10-04T12:32:39Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Elect Engn, Fac Engn Bauru, Sao Paulo, SP, Brazil | |
dc.description.affiliation | Corumba Concessoes SA, SIA Trecho 3 Lote 1875 Sia Sul, BR-71200030 Brasilia, DF, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Fac Sci, Sao Paulo, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Elect Engn, Fac Engn Bauru, Sao Paulo, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Fac Sci, Sao Paulo, SP, Brazil | |
dc.description.sponsorship | Corumba Concessoes S.A. | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Intel AI Academy | |
dc.description.sponsorshipId | Corumba Concessoes S.A.: ANEEL PD-2262-1602/2016 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2015/25739-4 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.description.sponsorshipId | Intel AI Academy: 2597.2017 | |
dc.format.extent | 8941-8944 | |
dc.identifier.citation | Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 8941-8944, 2018. | |
dc.identifier.issn | 2153-6996 | |
dc.identifier.uri | http://hdl.handle.net/11449/185094 | |
dc.identifier.wos | WOS:000451039808130 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Land-use classification | |
dc.subject | Drones | |
dc.subject | Convolutional Neural Networks | |
dc.title | ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6027713750942689[6] | |
unesp.author.orcid | 0000-0003-4861-7061[6] | |
unesp.department | Engenharia Elétrica - FEB | pt |