Publication: Disorder information from conductance: A quantum inverse problem
dc.contributor.author | Mukim, S. | |
dc.contributor.author | Amorim, F. P. | |
dc.contributor.author | Rocha, A. R. | |
dc.contributor.author | Muniz, R. B. | |
dc.contributor.author | Lewenkopf, C. | |
dc.contributor.author | Ferreira, M. S. | |
dc.contributor.institution | Dublin 2 | |
dc.contributor.institution | Saõ Paulo State University | |
dc.contributor.institution | Universidade Federal Fluminense (UFF) | |
dc.contributor.institution | Trinity College Dublin | |
dc.date.accessioned | 2022-04-29T08:45:29Z | |
dc.date.available | 2022-04-29T08:45:29Z | |
dc.date.issued | 2020-08-15 | |
dc.description.abstract | It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements. | en |
dc.description.affiliation | School of Physics Trinity College Dublin Dublin 2 | |
dc.description.affiliation | Instituto de Física Teórica Saõ Paulo State University | |
dc.description.affiliation | Instituto de Física Universidade Federal Fluminense | |
dc.description.affiliation | Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Advanced Materials and Bioengineering Research (AMBER) Centre Trinity College Dublin | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevB.102.075409 | |
dc.identifier.citation | Physical Review B, v. 102, n. 7, 2020. | |
dc.identifier.doi | 10.1103/PhysRevB.102.075409 | |
dc.identifier.issn | 2469-9969 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.scopus | 2-s2.0-85090114731 | |
dc.identifier.uri | http://hdl.handle.net/11449/231450 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review B | |
dc.source | Scopus | |
dc.title | Disorder information from conductance: A quantum inverse problem | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |