Publicação: Micro-MetaStream: Algorithm selection for time-changing data
dc.contributor.author | Rossi, André Luis Debiaso [UNESP] | |
dc.contributor.author | Soares, Carlos | |
dc.contributor.author | Souza, Bruno Feres de | |
dc.contributor.author | Ponce de Leon Ferreira de Carvalho, André Carlos | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade do Porto | |
dc.contributor.institution | Universidade Federal do Maranhão (UFMA) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2021-06-25T10:55:55Z | |
dc.date.available | 2021-06-25T10:55:55Z | |
dc.date.issued | 2021-07-01 | |
dc.description.abstract | Data stream mining needs to deal with scenarios where data distribution can change over time. As a result, different learning algorithms can be more suitable in different time periods. This paper proposes micro-MetaStream, a meta-learning based method to recommend the most suitable learning algorithm for each new example arriving in a data stream. It is an evolution of MetaStream, which recommends learning algorithms for batches of examples. By using a unitary granularity, micro-MetaStream is able to respond more efficiently to changes in data distribution than its predecessor. The meta-data combines meta-features, characteristics describing recent data, with base-level features, the original variables of the new example. In experiments on real-world regression data streams, micro-metaStream outperformed MetaStream and a baseline method at the meta-level and frequently improved the predictive performance at the base-level. | en |
dc.description.affiliation | São Paulo State University (Unesp), Campus of Itapeva | |
dc.description.affiliation | Fraunhofer Portugal AICOS and LIAAD-INESC TEC Faculdade de Engenharia Universidade do Porto | |
dc.description.affiliation | Universidade Federal do Maranhão (UFMA) | |
dc.description.affiliation | Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo | |
dc.description.affiliationUnesp | São Paulo State University (Unesp), Campus of Itapeva | |
dc.format.extent | 262-277 | |
dc.identifier | http://dx.doi.org/10.1016/j.ins.2021.02.075 | |
dc.identifier.citation | Information Sciences, v. 565, p. 262-277. | |
dc.identifier.doi | 10.1016/j.ins.2021.02.075 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.scopus | 2-s2.0-85102862542 | |
dc.identifier.uri | http://hdl.handle.net/11449/207483 | |
dc.language.iso | eng | |
dc.relation.ispartof | Information Sciences | |
dc.source | Scopus | |
dc.subject | Algorithm selection | |
dc.subject | Meta-learning | |
dc.subject | Time-changing data | |
dc.title | Micro-MetaStream: Algorithm selection for time-changing data | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Ciências e Engenharia, Itapeva | pt |
unesp.department | Engenharia Industrial Madeireira - ICE | pt |