A realization of the q-deformed harmonic oscillator: Rogers-Szego and Stieltjes-Wigert polynomials
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Sociedade Brasileira Fisica
Tipo
Artigo
Direito de acesso
Resumo
We discuss some results from q-series that can account for the foundations for the introduction of orthogonal polynomials on the circle and on the line, namely the Rogers-Szego and Stieltjes-Wigert polynomials. These polynomials are explicitly written and their orthogonality is verified. Explicit realizations of the raising and lowering operators for these polynomials are introduced in analogy to those of the Hermite polynomials that are shown to obey the q-commutation relations associated with the q-deformed harmonic oscillator.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Brazilian Journal Of Physics. Sao Paulo: Sociedade Brasileira Fisica, v. 33, n. 1, p. 148-157, 2003.


