Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Pulsed interactions unify reaction-diffusion and spatial nonlocal models for biological pattern formation

dc.contributor.authorColombo, Eduardo H.
dc.contributor.authorMartinez-Garcia, Ricardo [UNESP]
dc.contributor.authorCalabrese, Justin M.
dc.contributor.authorLópez, Cristóbal
dc.contributor.authorHernández-García, Emilio
dc.contributor.institutionCenter for Advanced Systems Understanding
dc.contributor.institutionHelmholtz-Zentrum Dresden-Rossendorf
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionHelmholtz Centre for Environmental Research—UFZ
dc.contributor.institutionUniversity of Maryland
dc.contributor.institutionCSIC-UIB
dc.date.accessioned2025-04-29T18:57:42Z
dc.date.issued2024-03-29
dc.description.abstractThe emergence of a spatially organized population distribution depends on the dynamics of the population and mediators of interaction (activators and inhibitors). Two broad classes of models have been used to investigate when and how self-organization is triggered, namely reaction-diffusion and spatially nonlocal models. Nevertheless, these models implicitly assume smooth propagation scenarios, neglecting that individuals interact many times by exchanging short and abrupt pulses of the mediating substance. A recently proposed framework has made advances in properly accounting for these short-scale fluctuations by applying a coarse-graining procedure on the pulse dynamics. In this paper, we generalize the coarse-graining procedure and apply the extended formalism to new scenarios in which mediators influence individuals’ reproductive success or their motility. We show that, in the slow- and fast-mediator limits, pulsed interactions recover, respectively, the reaction-diffusion and nonlocal models, providing a mechanistic connection between them. Furthermore, at each limit, the spatial stability condition is qualitatively different, leading to a timescale-induced transition where spatial patterns emerge as mediator dynamics becomes sufficiently fast.en
dc.description.affiliationCenter for Advanced Systems Understanding, Untermarkt 20
dc.description.affiliationHelmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400
dc.description.affiliationICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista—UNESP, SP
dc.description.affiliationDepartment of Ecological Modelling Helmholtz Centre for Environmental Research—UFZ
dc.description.affiliationDepartment of Biology University of Maryland
dc.description.affiliationInstituto de Física Interdisciplinar y Sistemas Complejos (IFISC) CSIC-UIB Campus Universitat Illes Balears
dc.description.affiliationUnespICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista—UNESP, SP
dc.identifierhttp://dx.doi.org/10.1088/1742-5468/ad2b57
dc.identifier.citationJournal of Statistical Mechanics: Theory and Experiment, v. 2024, n. 3, 2024.
dc.identifier.doi10.1088/1742-5468/ad2b57
dc.identifier.issn1742-5468
dc.identifier.scopus2-s2.0-85188321882
dc.identifier.urihttps://hdl.handle.net/11449/301256
dc.language.isoeng
dc.relation.ispartofJournal of Statistical Mechanics: Theory and Experiment
dc.sourceScopus
dc.subjectcoarse-graining
dc.subjectnonlinear dynamics
dc.subjectpattern formation
dc.subjectpopulation dynamics
dc.titlePulsed interactions unify reaction-diffusion and spatial nonlocal models for biological pattern formationen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulopt

Arquivos