Logotipo do repositório
 

Publicação:
Um passeio por várias álgebras na descrição do momento angular

dc.contributor.authorBelançon, Emerson Dionísio
dc.contributor.authorSilva, Samuel Da
dc.contributor.institutionUniversidade Federal de Mato Grosso Instituto de Ciências Exatas e Naturais Departamento de Matemática
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-03T17:32:01Z
dc.date.available2019-10-03T17:32:01Z
dc.date.issued2019
dc.description.abstractAbstract The most common way to mathematically define the angular moment is through the vector product operation as defined by Josiah Willard Gibbs and at the same time by Oliver Heaviside. This way, the contribution of this article is to show that the definition of angular moment can also be made using other algebraic systems existing and less known to most students, such as Hamilton algebra, Grassmann algebra and Clifford geometric algebra. Finally, we make a critical comparison between these definitions and their meanings.en
dc.description.abstractResumo A forma mais comum de definir matematicamente o momento angular é através da operação de produto vetorial como definido por Josiah Willard Gibbs e ao mesmo tempo por Oliver Heaviside. Neste sentido, a contribuição deste artigo é mostrar que a definição do momento angular também pode ser feita usando outros sistemas algébricos existentes e menos conhecidos da maioria dos estudantes, como a álgebra de Hamilton, a álgebra de Grassmann e a álgebra geométrica de Clifford. Por fim, realizamos uma comparação crítica entre estas definições e o seus significados.pt
dc.description.affiliationUniversidade Federal de Mato Grosso Instituto de Ciências Exatas e Naturais Departamento de Matemática
dc.description.affiliationUniversidade Estadual Paulista Departamento de Engenharia Mecânica Faculdade de Engenharia de Ilha Solteira
dc.description.affiliationUnespUniversidade Estadual Paulista Departamento de Engenharia Mecânica Faculdade de Engenharia de Ilha Solteira
dc.format.extent-
dc.identifierhttp://dx.doi.org/10.1590/1806-9126-rbef-2018-0252
dc.identifier.citationRevista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 41, n. 2, p. -, 2019.
dc.identifier.doi10.1590/1806-9126-rbef-2018-0252
dc.identifier.fileS1806-11172019000200412.pdf
dc.identifier.issn1806-1117
dc.identifier.scieloS1806-11172019000200412
dc.identifier.urihttp://hdl.handle.net/11449/183861
dc.language.isopor
dc.publisherSociedade Brasileira de Física
dc.relation.ispartofRevista Brasileira de Ensino de Física
dc.rights.accessRightsAcesso aberto
dc.sourceSciELO
dc.subjectangular momenten
dc.subjectalgebraen
dc.subjectquaternionen
dc.subjectvectorsen
dc.subjectmultivectorsen
dc.subjectHamiltonen
dc.subjectGrassmannen
dc.subjectClifforden
dc.subjectmomento angularpt
dc.subjectálgebrapt
dc.subjectquatérnionpt
dc.subjectvetorespt
dc.subjectmultivetorespt
dc.subjectHamiltonpt
dc.subjectGrassmannpt
dc.subjectCliffordpt
dc.titleUm passeio por várias álgebras na descrição do momento angularpt
dc.title.alternativeA walk through multiple algebras in the description of the moment angularen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S1806-11172019000200412.pdf
Tamanho:
1.75 MB
Formato:
Adobe Portable Document Format