Logotipo do repositório
 

Publicação:
Automatic classification of prostate stromal tissue in histological images using Haralick descriptors and Local Binary Patterns

dc.contributor.authorOliveira, Domingos Lucas Latorre de
dc.contributor.authorNascimento, Marcelo Zanchetta do
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorBatista, Valério Ramos
dc.contributor.authorGodoy, Moacir Fernandes de
dc.contributor.authorJacomini, Ricardo Souza
dc.contributor.authorDuarte, Yan Anderson Siriano
dc.contributor.authorArruda, P F F
dc.contributor.authorNeto, D S
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFaculdade de Medicina de São José do Rio Preto (FAMERP)
dc.contributor.institutionCentro Educacional Fundação Salvador Arena (CEFSA)
dc.contributor.institutionFundação Faculdade Regional de Medicina (FUNFARME)
dc.date.accessioned2015-04-27T11:55:45Z
dc.date.available2015-04-27T11:55:45Z
dc.date.issued2014
dc.description.abstractIn this paper we presente a classification system that uses a combination of texture features from stromal regions: Haralick features and Local Binary Patterns (LBP) in wavelet domain. The system has five steps for classification of the tissues. First, the stromal regions were detected and extracted using segmentation techniques based on thresholding and RGB colour space. Second, the Wavelet decomposition was applied in the extracted regions to obtain the Wavelet coefficients. Third, the Haralick and LBP features were extracted from the coefficients. Fourth, relevant features were selected using the ANOVA statistical method. The classication (fifth step) was performed with Radial Basis Function (RBF) networks. The system was tested in 105 prostate images, which were divided into three groups of 35 images: normal, hyperplastic and cancerous. The system performance was evaluated using the area under the ROC curve and resulted in 0.98 for normal versus cancer, 0.95 for hyperplasia versus cancer and 0.96 for normal versus hyperplasia. Our results suggest that texture features can be used as discriminators for stromal tissues prostate images. Furthermore, the system was effective to classify prostate images, specially the hyperplastic class which is the most difficult type in diagnosis and prognosis.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054000, SP, Brasil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto
dc.format.extent1-4
dc.identifierhttp://iopscience.iop.org/1742-6596/490/1/012151/
dc.identifier.citationJournal of Physics. Conference Series, v. 490, 2014.
dc.identifier.doi10.1088/1742-6596/490/1/012151
dc.identifier.fileISSN1742-6596-2014-490-012151.pdf
dc.identifier.issn1742-6596
dc.identifier.lattes2139053814879312
dc.identifier.urihttp://hdl.handle.net/11449/122440
dc.language.isoeng
dc.relation.ispartofJournal of Physics. Conference Series
dc.relation.ispartofsjr0,241
dc.rights.accessRightsAcesso aberto
dc.sourceCurrículo Lattes
dc.titleAutomatic classification of prostate stromal tissue in histological images using Haralick descriptors and Local Binary Patternsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
ISSN1742-6596-2014-490-012151.pdf
Tamanho:
516.67 KB
Formato:
Adobe Portable Document Format