Repository logo
 

Publication:
Patch-size and isolation effects in the Fisher-Kolmogorov equation

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Type

Article

Access right

Acesso restrito

Abstract

We examine the classical problem of the existence of a threshold size for a patch to allow for survival of a given population in the case where the patch is not completely isolated. The surrounding habitat matrix is characterized by a non-zero carrying capacity. We show that a critical patch size cannot be strictly defined in this case. We also obtain the saturation density in such a patch as a function of the size of the patch and the relative carrying capacity of the outer region. We argue that this relative carrying capacity is a measure of the isolation of the patch. Our results are then compared with conclusions drawn from observations of the population dynamics of understorey birds in fragments of the Amazonian forest and shown to qualitatively agree with them, offering an explanation for the importance of dispersal and isolation in these observations. Finally, we show that a generalized critical patch size can be introduced resorting to threshold densities for the observation of a given species.

Description

Keywords

population dynamics, critical patch size, isolation, Fisher-Kolmogorov equation

Language

English

Citation

Journal of Mathematical Biology. New York: Springer, v. 57, n. 4, p. 521-535, 2008.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs