Logo do repositório

The Rosenzweig-Porter model revisited for the three Wigner-Dyson symmetry classes

dc.contributor.authorČadež, Tilen
dc.contributor.authorKumar Nandy, Dillip
dc.contributor.authorRosa, Dario [UNESP]
dc.contributor.authorAndreanov, Alexei
dc.contributor.authorDietz, Barbara
dc.contributor.institutionInstitute for Basic Science (IBS)
dc.contributor.institutionS.K.C.G. (Auto.) College
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionKorea University of Science and Technology (UST)
dc.date.accessioned2025-04-29T18:37:31Z
dc.date.issued2024-08-01
dc.description.abstractInterest in the Rosenzweig-Porter model, a parameter-dependent random-matrix model which interpolates between Poisson and Wigner-Dyson (WD) statistics describing the fluctuation properties of the eigenstates of typical quantum systems with regular and chaotic classical dynamics, respectively, has come up again in recent years in the field of many-body quantum chaos. The reason is that the model exhibits parameter ranges in which the eigenvectors are Anderson-localized, non-ergodic (fractal) and ergodic extended, respectively. The central question is how these phases and their transitions can be distinguished through properties of the eigenvalues and eigenvectors. We present numerical results for all symmetry classes of Dyson’s threefold way. We analyzed the fluctuation properties in the eigenvalue spectra, and compared them with existing and new analytical results. Based on these results we propose characteristics of the short- and long-range correlations as measures to explore the transition from Poisson to WD statistics. Furthermore, we performed in-depth studies of the properties of the eigenvectors in terms of the fractal dimensions, the Kullback-Leibler (KL) divergences and the fidelity susceptibility. The ergodic and Anderson transitions take place at the same parameter values and a finite size scaling analysis of the KL divergences at the transitions yields the same critical exponents for all three WD classes, thus indicating superuniversality of these transitions.en
dc.description.affiliationCenter for Theoretical Physics of Complex Systems Institute for Basic Science (IBS)
dc.description.affiliationDepartment of Physics S.K.C.G. (Auto.) College, Odisha
dc.description.affiliationICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP—Univ. Estadual Paulista, Rua Dr Bento Teobaldo Ferraz 271 SP
dc.description.affiliationBasic Science Program Korea University of Science and Technology (UST)
dc.description.affiliationUnespICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP—Univ. Estadual Paulista, Rua Dr Bento Teobaldo Ferraz 271 SP
dc.identifierhttp://dx.doi.org/10.1088/1367-2630/ad5d86
dc.identifier.citationNew Journal of Physics, v. 26, n. 8, 2024.
dc.identifier.doi10.1088/1367-2630/ad5d86
dc.identifier.issn1367-2630
dc.identifier.scopus2-s2.0-85201319698
dc.identifier.urihttps://hdl.handle.net/11449/298565
dc.language.isoeng
dc.relation.ispartofNew Journal of Physics
dc.sourceScopus
dc.subjectAnderson transition
dc.subjectergodic transition
dc.subjectfractal states
dc.subjectnon-ergodic phase
dc.subjectquantum Chaos
dc.subjectrandom matrix theory
dc.subjectWigner-Dyson ensembles
dc.titleThe Rosenzweig-Porter model revisited for the three Wigner-Dyson symmetry classesen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-5343-4086[1]
unesp.author.orcid0000-0002-1667-4347 0000-0002-1667-4347[2]
unesp.author.orcid0000-0001-9747-1033 0000-0001-9747-1033 0000-0001-9747-1033[3]
unesp.author.orcid0000-0002-3033-0452 0000-0002-3033-0452[4]
unesp.author.orcid0000-0002-8251-6531 0000-0002-8251-6531[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulopt

Arquivos