Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Orthogonal polynomials on the unit circle: Verblunsky coefficients with some restrictions imposed on a pair of related real sequences

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

It was shown recently that associated with a pair of real sequences {{cn}n=1∞,{dn}n=1∞}, with {dn}n=1∞ a positive chain sequence, there exists a unique nontrivial probability measure μ on the unit circle. The Verblunsky coefficients {αn}n=0∞ associated with the orthogonal polynomials with respect to μ are given by the relation αn-1=τ¯n-1[1-2mn-icn1-icn],n≥1,where τ0= 1 , τn=∏k=1n(1-ick)/(1+ick), n≥ 1 and {mn}n=0∞ is the minimal parameter sequence of {dn}n=1∞. In this manuscript, we consider this relation and its consequences by imposing some restrictions of sign and periodicity on the sequences {cn}n=1∞ and {mn}n=1∞. When the sequence {cn}n=1∞ is of alternating sign, we use information about the zeros of associated para-orthogonal polynomials to show that there is a gap in the support of the measure in the neighbourhood of z= - 1. Furthermore, we show that it is possible to generate periodic Verblunsky coefficients by choosing periodic sequences {cn}n=1∞ and {mn}n=1∞ with the additional restriction c2n=-c2n-1,n≥1. We also give some results on periodic Verblunsky coefficients from the point of view of positive chain sequences. An example is provided to illustrate the results obtained.

Descrição

Palavras-chave

Alternating sign sequences, Chain sequences, Para-orthogonal polynomials, Periodic Verblunsky coefficients, Probability measures

Idioma

Inglês

Citação

Computational and Applied Mathematics, v. 37, n. 2, p. 1142-1161, 2018.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso