Logotipo do repositório
 

Publicação:
The Trinomial ATTRIVAR control chart

dc.contributor.authorSimoes, Felipe Domingues [UNESP]
dc.contributor.authorBranco Costa, Antonio Fernando
dc.contributor.authorGuerreiro Machado, Marcela Aparecida [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Itajuba
dc.date.accessioned2020-12-10T19:55:26Z
dc.date.available2020-12-10T19:55:26Z
dc.date.issued2020-06-01
dc.description.abstractIn this article, we propose the Trinomial - ATTRIVAR (T-ATTRIVAR) control chart where attribute and variable sample data are used to control the process mean. Firstly, two discriminating limits sort the sample items into three excluding categories; that is, items in categories A, B, or AB, are, respectively, items with X dimensions smaller than the lower discriminating limit, larger than the upper discriminating limit, or neither smaller than the lower discriminating limit nor larger than the upper discriminating limit. Depending on the number of sample items in each category, one of three decisions is made: the process is declared in-control, the process is declared out-of-control, or all sample items are also measured. In this last case, the sample mean of X is used to decide the state of the process. Aslam et al. (2015) worked with the particular case where the sample items are classified as defective (items in category - A plus items in category - B) or not-defective (items in category - AB). The strategy of splitting defectives into two excluding categories (A and B) enhances the performance of the ATTRIVAR chart. It is worth to emphasize that the previous attribute classification truncates the X distribution. Consequently, the mathematical development to obtain the ARLs is complex - the Average Run length (ARL) is the average number of samples the control chart requires to signal. With the density function of the sum of truncated X distributions, we obtained the exact ARLs. The exact minimum ARLs are lower than the minimum ARLs Ho and Aparisi (2016) obtained with the Genetic Algorithm.en
dc.description.affiliationUniv Estadual Paulista, Dept Prod, Campus Guaratingueta, Sao Paulo, SP, Brazil
dc.description.affiliationUniv Fed Itajuba, Itajuba, MG, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Prod, Campus Guaratingueta, Sao Paulo, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2018/07147-0
dc.description.sponsorshipIdCNPq: 306671/2015-0
dc.description.sponsorshipIdCNPq: 304599/2015-8
dc.format.extent8
dc.identifierhttp://dx.doi.org/10.1016/j.ijpe.2019.107559
dc.identifier.citationInternational Journal Of Production Economics. Amsterdam: Elsevier, v. 224, 8 p., 2020.
dc.identifier.doi10.1016/j.ijpe.2019.107559
dc.identifier.issn0925-5273
dc.identifier.urihttp://hdl.handle.net/11449/196764
dc.identifier.wosWOS:000525321800014
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofInternational Journal Of Production Economics
dc.sourceWeb of Science
dc.subjectShewhart control chart
dc.subjectATTRIVAR control chart
dc.subjectTruncated normal distributions
dc.subjectAverage run length
dc.subjectMonitoring process mean
dc.titleThe Trinomial ATTRIVAR control charten
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0001-8876-8302[1]
unesp.departmentProdução - FEGpt

Arquivos