Logotipo do repositório
 

Publicação:
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques

dc.contributor.authorlos Rios, Martin de [UNESP]
dc.contributor.authorMartinez, Hector J.
dc.contributor.authorCoenda, Valeria
dc.contributor.authorMuriel, Hernan
dc.contributor.authorRuiz, Andres N.
dc.contributor.authorVega-Martinez, Cristian A.
dc.contributor.authorCora, Sofia A.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNC
dc.contributor.institutionUniv Nacl Cordoba
dc.contributor.institutionUniv La Serena
dc.contributor.institutionUNLP
dc.contributor.institutionUniv Nacl La Plata
dc.date.accessioned2021-06-25T12:32:05Z
dc.date.available2021-06-25T12:32:05Z
dc.date.issued2021-01-01
dc.description.abstractWe present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, M-200 > 10(15)h(-1)M(circle dot), galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We select all galaxies with stellar mass M-star >= 10(8.5)h(-1)M(circle dot), as computed by the semi-analytic model of galaxy formation SAG, that are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance.en
dc.description.affiliationUniv Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUNC, Inst Astron Teor & Expt CCT Cordoba, CONICET, Laprida 854,X5000BGR, Cordoba, Argentina
dc.description.affiliationUniv Nacl Cordoba, Observ Astron, Laprida 854,X5000BGR, Cordoba, Argentina
dc.description.affiliationUniv La Serena, Inst Invest Multidisciplinar Ciencia & Tecnol, Raul Bitran 1305, La Serena, Chile
dc.description.affiliationUniv La Serena, Dept Astron, Av Juan Cisternas 1200 Norte, La Serena, Chile
dc.description.affiliationUNLP, Observ Astron, CONICET, Inst Astrofis La Plata CCT La Plata, Paseo Bosque S-N,B1900FWA, La Plata, Argentina
dc.description.affiliationUniv Nacl La Plata, Observ Astron, Fac Ciencias Astronom & Geofis, Paseo Bosque S-N,B1900FWA, La Plata, Argentina
dc.description.affiliationUnespUniv Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
dc.description.sponsorshipConsejo Nacional de Investigaciones Cientificas y Tecnicas (CON-ICET), Argentina
dc.description.sponsorshipAgencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Argentina
dc.description.sponsorshipSecretaria de Ciencia y Tecnologia, Universidad Nacional de Cordoba (SeCyT), Argentina
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipANPCyT
dc.description.sponsorshipSeCyT
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)
dc.description.sponsorshipAgencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT)
dc.description.sponsorshipUniversidad Nacional de La Plata, Argentina
dc.description.sponsorshipGauss Centre for Supercomputing e.V.
dc.description.sponsorshipPartnership for Advanced Supercomputing in Europe (PRACE)
dc.description.sponsorshipIdConsejo Nacional de Investigaciones Cientificas y Tecnicas (CON-ICET), Argentina: PIP 11220130100365CO
dc.description.sponsorshipIdANPCyT: PICT 2016-1975
dc.description.sponsorshipIdSeCyT: PID 33620180101077
dc.description.sponsorshipIdConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET): PIP-0387
dc.description.sponsorshipIdAgencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT): PICT-2018-3743
dc.description.sponsorshipIdUniversidad Nacional de La Plata, Argentina: G11-150
dc.format.extent1784-1794
dc.identifierhttp://dx.doi.org/10.1093/mnras/staa3339
dc.identifier.citationMonthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 500, n. 2, p. 1784-1794, 2021.
dc.identifier.doi10.1093/mnras/staa3339
dc.identifier.issn0035-8711
dc.identifier.urihttp://hdl.handle.net/11449/209871
dc.identifier.wosWOS:000605983000017
dc.language.isoeng
dc.publisherOxford Univ Press
dc.relation.ispartofMonthly Notices Of The Royal Astronomical Society
dc.sourceWeb of Science
dc.subjectmethods: analytical
dc.subjectmethods: numerical
dc.subjectgalaxies: clusters: general
dc.subjectgalaxies: kinematics and dynamics
dc.titleROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniquesen
dc.typeArtigo
dcterms.licensehttp://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html
dcterms.rightsHolderOxford Univ Press
dspace.entity.typePublication
unesp.author.orcid0000-0003-2190-2196[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos