Logotipo do repositório
 

Publicação:
Classifier for motor imagery during parametric functional electrical stimulation frequencies on the quadriceps muscle

dc.contributor.authorBroniera, P. [UNESP]
dc.contributor.authorNunes, W. R.B.M.
dc.contributor.authorLazzaretti, A. E.
dc.contributor.authorNohama, P.
dc.contributor.authorCarvalho, A. A. [UNESP]
dc.contributor.authorKrueger, E.
dc.contributor.authorTeixeira, M. C.M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCOELT-Electrical Engineering
dc.contributor.institutionFederal University of Technology
dc.contributor.institutionPontifical Catholic University of Paraná (PUCPR)
dc.contributor.institutionUniversidade Estadual de Londrina (UEL)
dc.date.accessioned2022-04-28T19:27:22Z
dc.date.available2022-04-28T19:27:22Z
dc.date.issued2019-05-16
dc.description.abstractThis work proposes the classification of motor imagery signals for brain-machine interfaces with functional electrical stimulation in the quadriceps muscle. Five volunteers participated in the test, 3 healthy participants, aged 28 ± 3 years, and 2 paraplegic volunteers, aged 43 (ASIA-B, C7 level - 16 years) and 47 (ASIA-A, T7 level - 20 years) years respectively. In total, each participant performed 90 repetitions of motor imaging of the lower limb under electrical stimulation, with frequencies of 20Hz, 35Hz, and 50Hz and current amplitude of 20mA. The patterns were analyzed off-line and submitted to the classification architectures after application of spatial filtering to extract the characteristics. The classification of the patterns was performed using the architectures: (i) Linear Discriminant Analysis (LDA), (ii) Multilayer Perceptron (MLP), and (iii) Support Vector Machine (SVM). To validate the proposal, the performance was compared between the classifiers through the accuracy of cross validation, variance, precision, and sensitivity. With the SVM classifier, the best accuracy percentage was 86.5%. These results are promising and the trained architectures are feasible for implementation in neuroprostheses with lower computational resources.en
dc.description.affiliationSão Paulo State University Campus Ilha Solteira
dc.description.affiliationUTFPR - Federal University of Technology - Paraná Campus Apucarana COELT-Electrical Engineering
dc.description.affiliationFederal University of Technology
dc.description.affiliationRehabilitation Engineering Laboratory/PPGTS Pontifical Catholic University of Paraná (PUCPR)
dc.description.affiliationState University of Londrina
dc.description.affiliationUnespSão Paulo State University Campus Ilha Solteira
dc.format.extent526-529
dc.identifierhttp://dx.doi.org/10.1109/NER.2019.8717105
dc.identifier.citationInternational IEEE/EMBS Conference on Neural Engineering, NER, v. 2019-March, p. 526-529.
dc.identifier.doi10.1109/NER.2019.8717105
dc.identifier.issn1948-3554
dc.identifier.issn1948-3546
dc.identifier.scopus2-s2.0-85066744265
dc.identifier.urihttp://hdl.handle.net/11449/221304
dc.language.isoeng
dc.relation.ispartofInternational IEEE/EMBS Conference on Neural Engineering, NER
dc.sourceScopus
dc.titleClassifier for motor imagery during parametric functional electrical stimulation frequencies on the quadriceps muscleen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos