Logotipo do repositório
 

Publicação:
Analog neural nonderivative optimizers

dc.contributor.authorTeixeira, MCM
dc.contributor.authorZak, S. H.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPurdue Univ
dc.date.accessioned2014-05-20T13:28:54Z
dc.date.available2014-05-20T13:28:54Z
dc.date.issued1998-07-01
dc.description.abstractContinuous-time neural networks for solving convex nonlinear unconstrained;programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one-dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.en
dc.description.affiliationUNESP, Dept Elect Engn, FEIS, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationPurdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
dc.description.affiliationUnespUNESP, Dept Elect Engn, FEIS, BR-15385000 Ilha Solteira, SP, Brazil
dc.format.extent629-638
dc.identifierhttp://dx.doi.org/10.1109/72.701176
dc.identifier.citationIEEE Transactions on Neural Networks. New York: IEEE-Inst Electrical Electronics Engineers Inc., v. 9, n. 4, p. 629-638, 1998.
dc.identifier.doi10.1109/72.701176
dc.identifier.issn1045-9227
dc.identifier.urihttp://hdl.handle.net/11449/9651
dc.identifier.wosWOS:000074419800005
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofIEEE Transactions on Neural Networks
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectanalog networkspt
dc.subjectcoordinate descentpt
dc.subjectderivative free optimizationpt
dc.subjectunconstrained optimizationpt
dc.titleAnalog neural nonderivative optimizersen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIEEE-Inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: