Logotipo do repositório
 

Publicação:
Bio-Inspired Metaheuristics Applied to the Parametrization of PI, PSS, and UPFC-POD Controllers for Small-Signal Stability Improvement in Power Systems

dc.contributor.authorFortes, Elenilson
dc.contributor.authorMartins, Luis Fabiano Barone
dc.contributor.authorMiotto, Ednei Luiz
dc.contributor.authorAraujo, Percival Bueno [UNESP]
dc.contributor.authorMacedo, Leonardo H. [UNESP]
dc.contributor.authorRomero, Ruben [UNESP]
dc.contributor.institutionGoias Fed Inst Educ Sci & Technol
dc.contributor.institutionParana Fed Inst Educ Sci & Technol
dc.contributor.institutionFed Technol Univ Parana
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-11-30T16:20:58Z
dc.date.available2022-11-30T16:20:58Z
dc.date.issued2022-09-16
dc.description.abstractThe firefly algorithm (FA) and the artificial bee colony (ABC) algorithm are used in this study to perform a coordinated parametrization of the proportional-integral and supplementary damping controllers, i.e., power system stabilizers (PSSs) and the unified power flow controller (UPFC)-power oscillation damping set. The parametrization obtained for the controllers should allow them to damp the low-frequency oscillatory modes in the power system for different loading scenarios. The power system dynamics is represented using a model based on current injections, known as the current sensitivity model, which implies that a formulation by current injections for the UPFC should be formulated. To validate the proposed optimization techniques and the current injection model for the UPFC for small-signal stability, simulations are carried out under two distinct perspectives, namely, static and dynamic analysis, using the New England system. The results demonstrated the effectiveness of the UPFC's current injection model. Moreover, it was possible to verify that the FA performed better than the ABC algorithm to solve the discussed problem, accrediting both the UPFC current injection model and the FA algorithm as new tools for small-signal stability analysis in electrical power systems.en
dc.description.affiliationGoias Fed Inst Educ Sci & Technol, Av Presidente Juscelino Kubitschek 775, BR-75804714 Jatai, Go, Brazil
dc.description.affiliationParana Fed Inst Educ Sci & Technol, Av Doutor Tito Sn, BR-86400000 Jacarezinho, PR, Brazil
dc.description.affiliationFed Technol Univ Parana, R Cristo Rei 19, BR-85902490 Toledo, PR, Brazil
dc.description.affiliationSao Paulo State Univ, Ave Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Ave Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil
dc.format.extent16
dc.identifierhttp://dx.doi.org/10.1007/s40313-022-00942-x
dc.identifier.citationJournal Of Control Automation And Electrical Systems. New York: Springer, 16 p., 2022.
dc.identifier.doi10.1007/s40313-022-00942-x
dc.identifier.issn2195-3880
dc.identifier.urihttp://hdl.handle.net/11449/237971
dc.identifier.wosWOS:000854441300001
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofJournal Of Control Automation And Electrical Systems
dc.sourceWeb of Science
dc.subjectArtificial bee colony
dc.subjectCurrent sensitivity model
dc.subjectFirefly algorithm
dc.subjectPOD
dc.subjectPSS
dc.subjectUPFC
dc.titleBio-Inspired Metaheuristics Applied to the Parametrization of PI, PSS, and UPFC-POD Controllers for Small-Signal Stability Improvement in Power Systemsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos