Logotipo do repositório
 

Publicação:
An Intrusion Detection System for Web-Based Attacks Using IBM Watson

dc.contributor.authorConde Camillo Da Silva, Ricardo [UNESP]
dc.contributor.authorOliveira Camargo, Marcos Paulo [UNESP]
dc.contributor.authorSanches Quessada, Matheus [UNESP]
dc.contributor.authorClaiton Lopes, Anderson [UNESP]
dc.contributor.authorDiassala Monteiro Ernesto, Jacinto [UNESP]
dc.contributor.authorPontara Da Costa, Kelton Augusto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:49:25Z
dc.date.available2022-04-28T19:49:25Z
dc.date.issued2022-02-01
dc.description.abstractThe internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature.en
dc.description.affiliationUniversidade Estadual Paulista São José Do Rio Preto
dc.description.affiliationUniversidade Estadual Paulista, São Paulo
dc.description.affiliationUnespUniversidade Estadual Paulista São José Do Rio Preto
dc.description.affiliationUnespUniversidade Estadual Paulista, São Paulo
dc.format.extent191-197
dc.identifierhttp://dx.doi.org/10.1109/TLA.2022.9661457
dc.identifier.citationIEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022.
dc.identifier.doi10.1109/TLA.2022.9661457
dc.identifier.issn1548-0992
dc.identifier.scopus2-s2.0-85122612051
dc.identifier.urihttp://hdl.handle.net/11449/223218
dc.language.isopor
dc.relation.ispartofIEEE Latin America Transactions
dc.sourceScopus
dc.subjectclassification
dc.subjectcyber attacks
dc.subjectIBM Watson
dc.subjectintrusion attack
dc.subjectmachine learning
dc.subjectWeb applications
dc.titleAn Intrusion Detection System for Web-Based Attacks Using IBM Watsonen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-0086-9745[1]
unesp.author.orcid0000-0003-3980-5204[2]
unesp.author.orcid0000-0002-4272-5267[3]
unesp.author.orcid0000-0003-2135-9947[4]
unesp.author.orcid0000-0001-5458-3908[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos