Logotipo do repositório
 

Publicação:
Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing

dc.contributor.authorCarvalho, Felipe M.
dc.contributor.authorCenteno, Dany
dc.contributor.authorTressia, Gustavo
dc.contributor.authorAvila, Julian A. [UNESP]
dc.contributor.authorCezario, Fabiano E.M.
dc.contributor.authorMárquez-Rossy, Andrés
dc.contributor.authorAriza, Edwan A.
dc.contributor.authorMasoumi, Mohammad
dc.contributor.institutionInstitute for Technological Research
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionInstituto Tecnológico Vale
dc.contributor.institutionUniversitat Politècnica de Catalunya
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionOak Ridge National Laboratory
dc.contributor.institutionUniversidad Tecnológica de Pereira
dc.date.accessioned2023-03-01T20:29:45Z
dc.date.available2023-03-01T20:29:45Z
dc.date.issued2022-05-01
dc.description.abstractThe constant demand for increasing the strength without ductility loss and production cost encourages industrial and academic societies to propose novel heat treatment processing of commercial steel grades. To improve the mechanical properties of commercial spring steel, a novel quenching and partitioning (Q&P) processing was designed to deliver a complex and desirable nanostructured multicomponent microstructure by controlling the carbon partitioning kinetics. Furthermore, the partitioning of excessive carbon from saturated martensite into untransformed austenite enhances the formation of transition carbides during tempering between 130 and 280 °C. Electron microscopy confirmed a complex multicomponent structure containing BCC tempered lath combined with retained austenite and nanocarbides particles within the tempered laths. Such multicomponent lath-type structure obtained by designed Q&P heat treatment on commercial carbon-silicon spring steel revealed localized mechanical resistance varying from 4.92 GPa for the QP-220-375-400 to 8.22 GPa for the QP-220-325-400 samples determined by nanoindentation test. Moreover, the tensile test showed high ultimate tensile strength and a yield strength up to 1400 MPa and 975 MPa, respectively, in the QP-220-375-400 sample due to a set of complex multicomponent lath-type refined structures designed by Q&P coupled with bainitic transformation, with good strain to fracture (∼0.12%).en
dc.description.affiliationMetallurgical Processes Laboratory Institute for Technological Research, Av. Prof. Almeida Prado
dc.description.affiliationMetallurgical and Materials Engineering Department University of Sao Paulo, Av. Prof. Mello Moraes
dc.description.affiliationInstituto Tecnológico Vale, Av. Juscelino Kubitschek 3 Bauxita, MG
dc.description.affiliationDepartment of Strength of Materials and Structural Engineering Barcelona School of Engineering (ETSEIB) Universitat Politècnica de Catalunya, Avda. Diagonal 647
dc.description.affiliationSao Paulo State University (UNESP), São João da Boa Vista SP
dc.description.affiliationCenter of Engineering Modelling and Applied Social Sciences Federal University of ABC UFABC, Santo Andre
dc.description.affiliationMaterials Science and Technology Division Oak Ridge National Laboratory
dc.description.affiliationEscuela de Tecnología Mecánica Universidad Tecnológica de Pereira, Carrera 27 10-02 Alamos
dc.description.affiliationUnespSao Paulo State University (UNESP), São João da Boa Vista SP
dc.format.extent4590-4603
dc.identifierhttp://dx.doi.org/10.1016/j.jmrt.2022.04.066
dc.identifier.citationJournal of Materials Research and Technology, v. 18, p. 4590-4603.
dc.identifier.doi10.1016/j.jmrt.2022.04.066
dc.identifier.issn2238-7854
dc.identifier.scopus2-s2.0-85136806854
dc.identifier.urihttp://hdl.handle.net/11449/240716
dc.language.isoeng
dc.relation.ispartofJournal of Materials Research and Technology
dc.sourceScopus
dc.subjectBoundaries
dc.subjectCrystal orientation
dc.subjectKernel average misorientation
dc.subjectLattice distortion
dc.subjectNanoparticles
dc.titleDevelopment of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processingen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-0865-3455[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vistapt

Arquivos