Publicação: Constructions of codes through the semigroup ring B[X; 1/2(2)Z(0)] and encoding
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Pergamon-Elsevier B.V. Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
For any finite commutative ring B with an identity there is a strict inclusion B[X; Z(0)] subset of B[X; Z(0)] subset of B[X; 1/2(2)Z(0)] of commutative semigroup rings. This work is a continuation of Shah et al. (2011) [8], in which we extend the study of Andrade and Palazzo (2005) [7] for cyclic codes through the semigroup ring B[X; 1/2; Z(0)] In this study we developed a construction technique of cyclic codes through a semigroup ring B[X; 1/2(2)Z(0)] instead of a polynomial ring. However in the second phase we independently considered BCH, alternant, Goppa, Srivastava codes through a semigroup ring B[X; 1/2(2)Z(0)]. Hence we improved several results of Shah et al. (2011) [8] and Andrade and Palazzo (2005) [7] in a broader sense. Published by Elsevier Ltd
Descrição
Palavras-chave
Semigroup, Semigroup ring, Cyclic code, BCH code, Goppa code, Srivastava code
Idioma
Inglês
Como citar
Computers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 62, n. 4, p. 1645-1654, 2011.