Logotipo do repositório
 

Publicação:
Lumen segmentation in magnetic resonance images of the carotid artery

dc.contributor.authorJodas, Danilo Samuel
dc.contributor.authorPereira, Aledir Silveira [UNESP]
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.institutionMinist Educ Brazil
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Porto
dc.date.accessioned2018-11-28T00:18:33Z
dc.date.available2018-11-28T00:18:33Z
dc.date.issued2016-12-01
dc.description.abstractInvestigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise.en
dc.description.affiliationMinist Educ Brazil, CAPES Fdn, BR-70040020 Brasilia, DF, Brazil
dc.description.affiliationUniv Estadual Paulista, Rua Cristovao Colombo,2265, BR-15054000 S J Do Rio Preto, Brazil
dc.description.affiliationUniv Porto, Fac Engn, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias,S-N, P-4200465 Oporto, Portugal
dc.description.affiliationUnespUniv Estadual Paulista, Rua Cristovao Colombo,2265, BR-15054000 S J Do Rio Preto, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipProject - SciTech - Science and Technology for Competitive and Sustainable Industries - by Programa Operacional Regional do Norte (NORTE) through Fundo Europeu de Desenvolvimento Regional (FEDER)
dc.description.sponsorshipIdCAPES: 0543/13-6
dc.description.sponsorshipIdProject - SciTech - Science and Technology for Competitive and Sustainable Industries - by Programa Operacional Regional do Norte (NORTE) through Fundo Europeu de Desenvolvimento Regional (FEDER): NORTE-01-0145-FEDER-000022
dc.format.extent233-242
dc.identifierhttp://dx.doi.org/10.1016/j.compbiomed.2016.10.021
dc.identifier.citationComputers In Biology And Medicine. Oxford: Pergamon-elsevier Science Ltd, v. 79, p. 233-242, 2016.
dc.identifier.doi10.1016/j.compbiomed.2016.10.021
dc.identifier.fileWOS000389294700024.pdf
dc.identifier.issn0010-4825
dc.identifier.urihttp://hdl.handle.net/11449/165396
dc.identifier.wosWOS:000389294700024
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputers In Biology And Medicine
dc.relation.ispartofsjr0,591
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMagnetic Resonance Imaging
dc.subjectK-means algorithm
dc.subjectDeformable model
dc.subjectSubtractive clustering
dc.subjectCircularity index
dc.titleLumen segmentation in magnetic resonance images of the carotid arteryen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000389294700024.pdf
Tamanho:
1.1 MB
Formato:
Adobe Portable Document Format
Descrição: