Logo do repositório

3D luminescent waveguides micromachining by femtosecond laser inscription in niobium germanate glass

dc.contributor.authorMarcondes, Lia Mara [UNESP]
dc.contributor.authorOrives, Juliane Resges [UNESP]
dc.contributor.authorNolasco, Lucas Konaka
dc.contributor.authorSantos, Sabrina N.C.
dc.contributor.authorMendonça, Cleber Renato
dc.contributor.authorCardinal, Thierry
dc.contributor.authorPetit, Yannick
dc.contributor.authorCanioni, Lionel
dc.contributor.authorDussauze, Marc
dc.contributor.authorNalin, Marcelo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversité de Bordeaux
dc.date.accessioned2025-04-29T19:29:08Z
dc.date.issued2025-02-01
dc.description.abstractThree-dimensional (3D) microstructures were written by femtosecond (fs) laser aiming to manufacture waveguides inside niobium germanate glasses. The laser-induced damage threshold using 1030 nm fs-laser irradiation was investigated, and the waveguides were written in different fluences. The morphology, structural information and refractive index changes of microstructures were discussed. The waveguide cross-section microscopy data shows an elliptical shape with a diameter varying with the applied pulse energy. The micro-Raman maps demonstrate the occurrence of structural modifications with different microregions along the laser propagation direction. The refractive index profiles point to the formation of at least one microregion containing a positive refractive index change along the laser propagation. Guided light transmission measurements demonstrate the formation of single-mode waveguides inscribed at low pulse energy (up to 132 nJ) and an emitting waveguide in the rare-earth-doped sample. The visible luminescent response of erbium ions in the waveguide output was demonstrated and supports the possibility of using these core waveguides for future 3D multi-functional photonic devices operating in the visible region.en
dc.description.affiliationInstitute of Chemistry São Paulo State University (UNESP), SP
dc.description.affiliationSão Carlos Institute of Physics University of São Paulo, PO Box 369, SP
dc.description.affiliationInstitut de Chimie de la Matière Condensée de Bordeaux Université de Bordeaux, 87 Avenue du Dr Schweitzer
dc.description.affiliationInstitut des Sciences Moléculaires UMR 5255 Université de Bordeaux, 351 cours de la Libération, Talence, Cedex
dc.description.affiliationDepartment of Materials Engineering School of Engineering of São Carlos University of São Paulo, PO Box 359, SP
dc.description.affiliationUnespInstitute of Chemistry São Paulo State University (UNESP), SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 156420/2018-0
dc.description.sponsorshipIdFAPESP: 2013/07793-6
dc.description.sponsorshipIdFAPESP: 2020/01786-1
dc.description.sponsorshipIdFAPESP: 2021/11494-0
dc.identifierhttp://dx.doi.org/10.1016/j.optmat.2024.116562
dc.identifier.citationOptical Materials, v. 159.
dc.identifier.doi10.1016/j.optmat.2024.116562
dc.identifier.issn0925-3467
dc.identifier.scopus2-s2.0-85212344531
dc.identifier.urihttps://hdl.handle.net/11449/303252
dc.language.isoeng
dc.relation.ispartofOptical Materials
dc.sourceScopus
dc.subjectFs-laser inscription
dc.subjectGlasses
dc.subjectMicro-optic devices
dc.subjectWaveguides
dc.title3D luminescent waveguides micromachining by femtosecond laser inscription in niobium germanate glassen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.author.orcid0000-0003-2513-1843 0000-0003-2513-1843[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos