Publicação: On multivariate orthogonal polynomials and elementary symmetric functions
dc.contributor.author | Bracciali, Cleonice F. [UNESP] | |
dc.contributor.author | Piñar, Miguel A. | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Facultad de Ciencias. Universidad de Granada | |
dc.date.accessioned | 2023-07-29T13:26:56Z | |
dc.date.available | 2023-07-29T13:26:56Z | |
dc.date.issued | 2023-01-01 | |
dc.description.abstract | We study families of multivariate orthogonal polynomials with respect to the symmetric weight function in d variables Bγ(x)=∏i=1dω(xi)∏i<j|xi-xj|2γ+1,x∈(a,b)d,for γ> - 1 , where ω(t) is an univariate weight function in t∈ (a, b) and x= (x1, x2, … , xd) with xi∈ (a, b). Applying the change of variables xi, i= 1 , 2 , … , d, into ur, r= 1 , 2 , … , d, where ur is the r-th elementary symmetric function, we obtain the domain region in terms of the discriminant of the polynomials having xi, i= 1 , 2 , … , d, as its zeros and in terms of the corresponding Sturm sequence. Choosing the univariate weight function as the Hermite, Laguerre, and Jacobi weight functions, we obtain the representation in terms of the variables ur for the partial differential operators such that the respective Hermite, Laguerre, and Jacobi generalized multivariate orthogonal polynomials are the eigenfunctions. Finally, we present explicitly the partial differential operators for Hermite, Laguerre, and Jacobi generalized polynomials, for d= 2 and d= 3 variables. | en |
dc.description.affiliation | Departamento de Matemática IBILCE UNESP - Universidade Estadual Paulista, SP | |
dc.description.affiliation | Instituto de Matemáticas IMAG & Departamento de Matemática Aplicada Facultad de Ciencias. Universidad de Granada | |
dc.description.affiliationUnesp | Departamento de Matemática IBILCE UNESP - Universidade Estadual Paulista, SP | |
dc.description.sponsorship | Universidad de Granada | |
dc.description.sponsorship | Vicerrectorado de Investigación y Transferencia, Universidad de Granada | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Agencia Estatal de Investigación | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades | |
dc.description.sponsorshipId | CAPES: 88887.468471/2019-00 | |
dc.description.sponsorshipId | Agencia Estatal de Investigación: CEX2020-001105-M/AEI/10.13039/501100011033 | |
dc.description.sponsorshipId | Ministerio de Ciencia, Innovación y Universidades: PGC2018-094932-B-I00 | |
dc.format.extent | 183-206 | |
dc.identifier | http://dx.doi.org/10.1007/s11075-022-01434-4 | |
dc.identifier.citation | Numerical Algorithms, v. 92, n. 1, p. 183-206, 2023. | |
dc.identifier.doi | 10.1007/s11075-022-01434-4 | |
dc.identifier.issn | 1572-9265 | |
dc.identifier.issn | 1017-1398 | |
dc.identifier.scopus | 2-s2.0-85141170199 | |
dc.identifier.uri | http://hdl.handle.net/11449/247828 | |
dc.language.iso | eng | |
dc.relation.ispartof | Numerical Algorithms | |
dc.source | Scopus | |
dc.subject | Elementary symmetric functions | |
dc.subject | Multivariate orthogonal polynomials | |
dc.subject | Symmetric polynomials | |
dc.title | On multivariate orthogonal polynomials and elementary symmetric functions | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0001-6210-4567[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |