Logo do repositório

Testing gravity with gauge-invariant polarization states of gravitational waves: Theory and pulsar timing sensitivity

dc.contributor.authorAlves, Márcio E. S. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:48:18Z
dc.date.issued2024-05-15
dc.description.abstractThe determination of the polarization modes of gravitational waves (GWs) and their dispersion relations is a crucial task for scrutinizing the viability of extended theories of gravity. A tool to investigate the polarization states of GWs is the well-known formalism developed by Eardley, Lee, and Lightman [Phys. Rev. D 8, 3308 (1973).PRVDAQ0556-282110.1103/PhysRevD.8.3308] which uses the Newman-Penrose (NP) coefficients to determine the polarization content of GWs in metric theories of gravity. However, if the speed of GWs is smaller than the speed of light, the number of NP coefficients is greater than the number of polarizations. To overcome this inconvenience we use the Bardeen formalism to describe the six possible polarization modes of GWs considering general dispersion relations for the modes. The definition of a new gauge-invariant quantity enables an unambiguous description of the scalar longitudinal polarization mode. We apply the formalism to general relativity, scalar-tensor theories, f(R) gravity, and a wide class of quadratic gravity. To obtain a bridge between theory and experiment, we derive an explicit relation between a physical observable (the derivative of the frequency shift of an electromagnetic signal), and the gauge-invariant variables. From this relation, we find an analytical formula for the pulsar timing rms response to each polarization mode. To estimate the sensitivity of a single pulsar timing, we focus on the case of a dispersion relation of a massive particle. The sensitivity curves of the scalar longitudinal and vector polarization modes change significantly depending on the value of the effective mass. The detection (or absence of detection) of the polarization modes using the pulsar timing technique has decisive implications for alternative theories of gravity. Finally, investigating a cutoff frequency in the pulsar timing band can lead to a more stringent bound on the graviton mass than that presented by ground-based interferometers.en
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Instituto de Ciência e Tecnologia, SP
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Faculdade de Engenharia e Ciências Departamento de Física e Química, Guaratinguetá, SP
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Instituto de Ciência e Tecnologia, SP
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Faculdade de Engenharia e Ciências Departamento de Física e Química, Guaratinguetá, SP
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.109.104054
dc.identifier.citationPhysical Review D, v. 109, n. 10, 2024.
dc.identifier.doi10.1103/PhysRevD.109.104054
dc.identifier.issn2470-0029
dc.identifier.issn2470-0010
dc.identifier.scopus2-s2.0-85193697965
dc.identifier.urihttps://hdl.handle.net/11449/299985
dc.language.isoeng
dc.relation.ispartofPhysical Review D
dc.sourceScopus
dc.titleTesting gravity with gauge-invariant polarization states of gravitational waves: Theory and pulsar timing sensitivityen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa4071986-4355-47c3-a5a3-bd4d1a966e4f
relation.isOrgUnitOfPublication.latestForDiscoverya4071986-4355-47c3-a5a3-bd4d1a966e4f
unesp.author.orcid0000-0002-7063-694X 0000-0002-7063-694X[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos