Logo do repositório

Determining the dark matter distribution in simulated galaxies with deep learning

dc.contributor.authorDe Los Rios, Martín [UNESP]
dc.contributor.authorPetač, Mihael
dc.contributor.authorZaldivar, Bryan
dc.contributor.authorBonaventura, Nina R
dc.contributor.authorCalore, Francesca
dc.contributor.authorIocco, Fabio
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidad Autónoma de Madrid
dc.contributor.institutionUniversity of Nova Gorica
dc.contributor.institutionCNRS
dc.contributor.institutionUniversity of Valencia and CSIC
dc.contributor.institutionUniversity of Copenhagen
dc.contributor.institutionLAPTh
dc.contributor.institutionComplesso Univ. Monte S. Angelo
dc.date.accessioned2025-04-29T19:14:10Z
dc.date.issued2023-11-01
dc.description.abstractWe present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris-TNG100). Within the controlled environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies of mass ∼1011- from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts of the galaxies, with a mean absolute error always below ≈0.25 when using photometrical and spectroscopic information. With respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of spectroscopic observations.en
dc.description.affiliationICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista
dc.description.affiliationDepartamento de Física Teórica Universidad Autónoma de Madrid
dc.description.affiliationInstituto de Física Teórica UAM-CSIC Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Cantoblanco
dc.description.affiliationCenter for Astrophysics and Cosmology (CAC) University of Nova Gorica, Vipavska 11c
dc.description.affiliationLaboratoire Univers et Particules de Montpellier (LUPM) Université de Montpellier (UMR-5299) CNRS, Place Eugène Bataillon
dc.description.affiliationInstitute of Corpuscular Physics (IFIC) University of Valencia and CSIC, Calle Catedrático José Beltrán 2
dc.description.affiliationCosmic Dawn Center Niels Bohr Institute University of Copenhagen, Jagtvej 128
dc.description.affiliationUniv. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LAPTh
dc.description.affiliationDipartimento di Fisica 'Ettore Pancini Universitá degli studi di Napoli 'Federico II INFN sezione di Napoli Complesso Univ. Monte S. Angelo
dc.description.affiliationUnespICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista
dc.description.sponsorshipGeneralitat Valenciana
dc.format.extent6015-6035
dc.identifierhttp://dx.doi.org/10.1093/mnras/stad2614
dc.identifier.citationMonthly Notices of the Royal Astronomical Society, v. 525, n. 4, p. 6015-6035, 2023.
dc.identifier.doi10.1093/mnras/stad2614
dc.identifier.issn1365-2966
dc.identifier.issn0035-8711
dc.identifier.scopus2-s2.0-85175403670
dc.identifier.urihttps://hdl.handle.net/11449/302298
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.sourceScopus
dc.subjectdark matter
dc.subjectgalaxies: General
dc.subjectgalaxies: haloes
dc.subjectmethods: data analysis
dc.subjectsoftware: Simulations
dc.titleDetermining the dark matter distribution in simulated galaxies with deep learningen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-2190-2196 0000-0003-2190-2196 0000-0003-2190-2196[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulopt

Arquivos