Determining the dark matter distribution in simulated galaxies with deep learning
| dc.contributor.author | De Los Rios, Martín [UNESP] | |
| dc.contributor.author | Petač, Mihael | |
| dc.contributor.author | Zaldivar, Bryan | |
| dc.contributor.author | Bonaventura, Nina R | |
| dc.contributor.author | Calore, Francesca | |
| dc.contributor.author | Iocco, Fabio | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidad Autónoma de Madrid | |
| dc.contributor.institution | University of Nova Gorica | |
| dc.contributor.institution | CNRS | |
| dc.contributor.institution | University of Valencia and CSIC | |
| dc.contributor.institution | University of Copenhagen | |
| dc.contributor.institution | LAPTh | |
| dc.contributor.institution | Complesso Univ. Monte S. Angelo | |
| dc.date.accessioned | 2025-04-29T19:14:10Z | |
| dc.date.issued | 2023-11-01 | |
| dc.description.abstract | We present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris-TNG100). Within the controlled environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies of mass ∼1011- from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts of the galaxies, with a mean absolute error always below ≈0.25 when using photometrical and spectroscopic information. With respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of spectroscopic observations. | en |
| dc.description.affiliation | ICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista | |
| dc.description.affiliation | Departamento de Física Teórica Universidad Autónoma de Madrid | |
| dc.description.affiliation | Instituto de Física Teórica UAM-CSIC Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Cantoblanco | |
| dc.description.affiliation | Center for Astrophysics and Cosmology (CAC) University of Nova Gorica, Vipavska 11c | |
| dc.description.affiliation | Laboratoire Univers et Particules de Montpellier (LUPM) Université de Montpellier (UMR-5299) CNRS, Place Eugène Bataillon | |
| dc.description.affiliation | Institute of Corpuscular Physics (IFIC) University of Valencia and CSIC, Calle Catedrático José Beltrán 2 | |
| dc.description.affiliation | Cosmic Dawn Center Niels Bohr Institute University of Copenhagen, Jagtvej 128 | |
| dc.description.affiliation | Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LAPTh | |
| dc.description.affiliation | Dipartimento di Fisica 'Ettore Pancini Universitá degli studi di Napoli 'Federico II INFN sezione di Napoli Complesso Univ. Monte S. Angelo | |
| dc.description.affiliationUnesp | ICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista | |
| dc.description.sponsorship | Generalitat Valenciana | |
| dc.format.extent | 6015-6035 | |
| dc.identifier | http://dx.doi.org/10.1093/mnras/stad2614 | |
| dc.identifier.citation | Monthly Notices of the Royal Astronomical Society, v. 525, n. 4, p. 6015-6035, 2023. | |
| dc.identifier.doi | 10.1093/mnras/stad2614 | |
| dc.identifier.issn | 1365-2966 | |
| dc.identifier.issn | 0035-8711 | |
| dc.identifier.scopus | 2-s2.0-85175403670 | |
| dc.identifier.uri | https://hdl.handle.net/11449/302298 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Monthly Notices of the Royal Astronomical Society | |
| dc.source | Scopus | |
| dc.subject | dark matter | |
| dc.subject | galaxies: General | |
| dc.subject | galaxies: haloes | |
| dc.subject | methods: data analysis | |
| dc.subject | software: Simulations | |
| dc.title | Determining the dark matter distribution in simulated galaxies with deep learning | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0003-2190-2196 0000-0003-2190-2196 0000-0003-2190-2196[1] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulo | pt |
