Logotipo do repositório
 

Publicação:
Robust multi-objective optimization of a renewable based hybrid power system

dc.contributor.authorRoberts, Justo José [UNESP]
dc.contributor.authorMarotta Cassula, Agnelo [UNESP]
dc.contributor.authorSilveira, José Luz
dc.contributor.authorda Costa Bortoni, Edson
dc.contributor.authorMendiburu, Andrés Z. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionItajubá Federal University – UNIFEI
dc.date.accessioned2018-12-11T17:19:36Z
dc.date.available2018-12-11T17:19:36Z
dc.date.issued2018-08-01
dc.description.abstractThis paper proposes a probabilistic simulation-based multi-objective optimization approach for dimensioning robust renewable based Hybrid Power Systems. The method integrates an Optimization Module based on a multi-objective Genetic Algorithm, an Uncertainty Module that uses Latin Hypercube Sampling method and Monte Carlo Simulation to generate uncertainty scenarios and a Simulation Module to simulate the power system under real operating conditions. Uncertainties considered include the renewable resources availability, the load demand, and the probability of the components’ failure. The performance of the proposed approach was assessed in a rural community of the Amazonian region of Brazil. Results show that a system configuration with the same level of reliability as in the deterministic scenario implies a higher economic cost; however, the configurations obtained probabilistically represent feasible robust solutions and guarantee a reliable source of generation. The proposed optimization method constitutes a useful decision making tool for dimensioning hybrid power systems that require both optimality and robustness.en
dc.description.affiliationEngineering Faculty UNESP–Univ Estadual Paulista Campus of Guaratinguetá Department of Electrical Engineering, Av. Ariberto P. da Cunha, 333 – Guaratinguetá
dc.description.affiliationInstitute of Bioenergy Research, IPBEN–UNESP Guaratinguetá
dc.description.affiliationEngineering Faculty Itajubá Federal University – UNIFEI
dc.description.affiliationEngineering Faculty UNESP–Univ Estadual Paulista Campus of Guaratinguetá Energy Department, Av. Ariberto P. da Cunha, 333 – Guaratinguetá
dc.description.affiliationUnespEngineering Faculty UNESP–Univ Estadual Paulista Campus of Guaratinguetá Department of Electrical Engineering, Av. Ariberto P. da Cunha, 333 – Guaratinguetá
dc.description.affiliationUnespEngineering Faculty UNESP–Univ Estadual Paulista Campus of Guaratinguetá Energy Department, Av. Ariberto P. da Cunha, 333 – Guaratinguetá
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent52-68
dc.identifierhttp://dx.doi.org/10.1016/j.apenergy.2018.04.032
dc.identifier.citationApplied Energy, v. 223, p. 52-68.
dc.identifier.doi10.1016/j.apenergy.2018.04.032
dc.identifier.file2-s2.0-85045732325.pdf
dc.identifier.issn0306-2619
dc.identifier.scopus2-s2.0-85045732325
dc.identifier.urihttp://hdl.handle.net/11449/176207
dc.language.isoeng
dc.relation.ispartofApplied Energy
dc.relation.ispartofsjr3,162
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectGenetic Algorithm
dc.subjectHybrid power systems dimensioning
dc.subjectProbabilistic simulation
dc.subjectRenewable energy
dc.subjectUncertainty
dc.titleRobust multi-objective optimization of a renewable based hybrid power systemen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEnergia - FEGpt
unesp.departmentEngenharia Elétrica - FEGpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85045732325.pdf
Tamanho:
1.47 MB
Formato:
Adobe Portable Document Format
Descrição: