Publicação: Verblunsky coefficients related with periodic real sequences and associated measures on the unit circle
dc.contributor.author | Bracciali, Cleonice F. [UNESP] | |
dc.contributor.author | Silva, Jairo S. [UNESP] | |
dc.contributor.author | Sri Ranga, A. [UNESP] | |
dc.contributor.author | Veronese, Daniel O. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal do Maranhão | |
dc.contributor.institution | Universidade Federal do Triângulo Mineiro | |
dc.date.accessioned | 2018-12-11T17:05:24Z | |
dc.date.available | 2018-12-11T17:05:24Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | It is known that given a pair of real sequences {{cn}n=1 ∞,{dn}n=1 ∞}, with {dn}n=1 ∞ a positive chain sequence, we can associate a unique nontrivial probability measure μ on the unit circle. Precisely, the measure is such that the corresponding Verblunsky coefficients {αn}n=0 ∞ are given by the relationαn−1=ρ‾n−1[[formula presented]],n≥1 where ρ0=1, ρn=∏k=1 n(1−ick)/(1+ick), n≥1 and {mn}n=0 ∞ is the minimal parameter sequence of {dn}n=1 ∞. In this paper we consider the space, denoted by Np, of all nontrivial probability measures such that the associated real sequences {cn}n=1 ∞ and {mn}n=1 ∞ are periodic with period p, for p∈N. By assuming an appropriate metric on the space of all nontrivial probability measures on the unit circle, we show that there exists a homeomorphism gp between the metric subspaces Np and Vp, where Vp denotes the space of nontrivial probability measures with associated p-periodic Verblunsky coefficients. Moreover, it is shown that the set Fp of fixed points of gp is exactly Vp∩Np and this set is characterized by a (p−1)-dimensional submanifold of Rp. We also prove that the study of probability measures in Np is equivalent to the study of probability measures in Vp. Furthermore, it is shown that the pure points of measures in Np are, in fact, zeros of associated para-orthogonal polynomials of degree p. We also look at the essential support of probability measures in the limit periodic case, i.e., when the sequences {cn}n=1 ∞ and {mn}n=1 ∞ are limit periodic with period p. Finally, we give some examples to illustrate the results obtained. | en |
dc.description.affiliation | Depto de Matemática Aplicada IBILCE UNESP – Univ Estadual Paulista | |
dc.description.affiliation | Depto de Matemática Universidade Federal do Maranhão | |
dc.description.affiliation | Pós-Graduação em Matemática IBILCE UNESP – Univ Estadual Paulista | |
dc.description.affiliation | ICTE Universidade Federal do Triângulo Mineiro | |
dc.description.affiliationUnesp | Depto de Matemática Aplicada IBILCE UNESP – Univ Estadual Paulista | |
dc.description.affiliationUnesp | Pós-Graduação em Matemática IBILCE UNESP – Univ Estadual Paulista | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/22571-2 | |
dc.description.sponsorshipId | CNPq: 305073/2014-1 | |
dc.description.sponsorshipId | CNPq: 305208/2015-2 | |
dc.description.sponsorshipId | CNPq: 475502/2013-2 | |
dc.format.extent | 719-745 | |
dc.identifier | http://dx.doi.org/10.1016/j.jmaa.2016.08.009 | |
dc.identifier.citation | Journal of Mathematical Analysis and Applications, v. 445, n. 1, p. 719-745, 2017. | |
dc.identifier.doi | 10.1016/j.jmaa.2016.08.009 | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.lattes | 8300322452622467 | |
dc.identifier.orcid | 0000-0002-6823-4204 | |
dc.identifier.scopus | 2-s2.0-84984797715 | |
dc.identifier.uri | http://hdl.handle.net/11449/173427 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | |
dc.relation.ispartofsjr | 1,103 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Chain sequences | |
dc.subject | Periodic real sequences | |
dc.subject | Periodic Verblunsky coefficients | |
dc.subject | Probability measures | |
dc.title | Verblunsky coefficients related with periodic real sequences and associated measures on the unit circle | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 8300322452622467[1] | |
unesp.author.orcid | 0000-0002-6823-4204[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |
unesp.department | Matemática Aplicada - IBILCE | pt |