Logotipo do repositório
 

Publicação:
Verblunsky coefficients related with periodic real sequences and associated measures on the unit circle

dc.contributor.authorBracciali, Cleonice F. [UNESP]
dc.contributor.authorSilva, Jairo S. [UNESP]
dc.contributor.authorSri Ranga, A. [UNESP]
dc.contributor.authorVeronese, Daniel O. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do Maranhão
dc.contributor.institutionUniversidade Federal do Triângulo Mineiro
dc.date.accessioned2018-12-11T17:05:24Z
dc.date.available2018-12-11T17:05:24Z
dc.date.issued2017-01-01
dc.description.abstractIt is known that given a pair of real sequences {{cn}n=1 ∞,{dn}n=1 ∞}, with {dn}n=1 ∞ a positive chain sequence, we can associate a unique nontrivial probability measure μ on the unit circle. Precisely, the measure is such that the corresponding Verblunsky coefficients {αn}n=0 ∞ are given by the relationαn−1=ρ‾n−1[[formula presented]],n≥1 where ρ0=1, ρn=∏k=1 n(1−ick)/(1+ick), n≥1 and {mn}n=0 ∞ is the minimal parameter sequence of {dn}n=1 ∞. In this paper we consider the space, denoted by Np, of all nontrivial probability measures such that the associated real sequences {cn}n=1 ∞ and {mn}n=1 ∞ are periodic with period p, for p∈N. By assuming an appropriate metric on the space of all nontrivial probability measures on the unit circle, we show that there exists a homeomorphism gp between the metric subspaces Np and Vp, where Vp denotes the space of nontrivial probability measures with associated p-periodic Verblunsky coefficients. Moreover, it is shown that the set Fp of fixed points of gp is exactly Vp∩Np and this set is characterized by a (p−1)-dimensional submanifold of Rp. We also prove that the study of probability measures in Np is equivalent to the study of probability measures in Vp. Furthermore, it is shown that the pure points of measures in Np are, in fact, zeros of associated para-orthogonal polynomials of degree p. We also look at the essential support of probability measures in the limit periodic case, i.e., when the sequences {cn}n=1 ∞ and {mn}n=1 ∞ are limit periodic with period p. Finally, we give some examples to illustrate the results obtained.en
dc.description.affiliationDepto de Matemática Aplicada IBILCE UNESP – Univ Estadual Paulista
dc.description.affiliationDepto de Matemática Universidade Federal do Maranhão
dc.description.affiliationPós-Graduação em Matemática IBILCE UNESP – Univ Estadual Paulista
dc.description.affiliationICTE Universidade Federal do Triângulo Mineiro
dc.description.affiliationUnespDepto de Matemática Aplicada IBILCE UNESP – Univ Estadual Paulista
dc.description.affiliationUnespPós-Graduação em Matemática IBILCE UNESP – Univ Estadual Paulista
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/22571-2
dc.description.sponsorshipIdCNPq: 305073/2014-1
dc.description.sponsorshipIdCNPq: 305208/2015-2
dc.description.sponsorshipIdCNPq: 475502/2013-2
dc.format.extent719-745
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2016.08.009
dc.identifier.citationJournal of Mathematical Analysis and Applications, v. 445, n. 1, p. 719-745, 2017.
dc.identifier.doi10.1016/j.jmaa.2016.08.009
dc.identifier.issn1096-0813
dc.identifier.issn0022-247X
dc.identifier.lattes8300322452622467
dc.identifier.orcid0000-0002-6823-4204
dc.identifier.scopus2-s2.0-84984797715
dc.identifier.urihttp://hdl.handle.net/11449/173427
dc.language.isoeng
dc.relation.ispartofJournal of Mathematical Analysis and Applications
dc.relation.ispartofsjr1,103
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectChain sequences
dc.subjectPeriodic real sequences
dc.subjectPeriodic Verblunsky coefficients
dc.subjectProbability measures
dc.titleVerblunsky coefficients related with periodic real sequences and associated measures on the unit circleen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes8300322452622467[1]
unesp.author.orcid0000-0002-6823-4204[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt
unesp.departmentMatemática Aplicada - IBILCEpt

Arquivos