Publicação: Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
dc.contributor.author | Neves, Leandro Alves [UNESP] | |
dc.contributor.author | Martinez, João Manuel Cardoso [UNESP] | |
dc.contributor.author | da Costa Longo, Leonardo H. [UNESP] | |
dc.contributor.author | Roberto, Guilherme Freire | |
dc.contributor.author | Tosta, Thaína Aparecida Azevedo | |
dc.contributor.author | de Faria, Paulo Rogério | |
dc.contributor.author | Loyola, Adriano Mota | |
dc.contributor.author | Cardoso, Sérgio Vitorino | |
dc.contributor.author | Silva, Adriano Barbosa | |
dc.contributor.author | do Nascimento, Marcelo Zanchetta | |
dc.contributor.author | Rozendo, Guilherme Botazzo [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | |
dc.date.accessioned | 2023-07-29T13:57:17Z | |
dc.date.available | 2023-07-29T13:57:17Z | |
dc.date.issued | 2023-01-01 | |
dc.description.abstract | The study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis. | en |
dc.description.affiliation | Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, SP | |
dc.description.affiliation | Institute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), Av. Trabalhador São-carlense, 400, SP | |
dc.description.affiliation | Science and Technology Institute Federal University of São Paulo (UNIFESP), Avenida Cesare Mansueto Giulio Lattes, 1201, São Paulo | |
dc.description.affiliation | Department of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia (UFU), Av. Amazonas, S/N, MG | |
dc.description.affiliation | Area of Oral Pathology School of Dentistry Federal University of Uberlândia (UFU), R. Ceará - Umuarama, MG | |
dc.description.affiliation | Faculty of Computer Science (FACOM) Federal University of Uberlândia (UFU), Avenida João Naves de Ávila 2121, Bl.B, MG | |
dc.description.affiliationUnesp | Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, SP | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
dc.description.sponsorshipId | CNPq: #153904/2021-6 | |
dc.description.sponsorshipId | FAPESP: #2022/03020-1 | |
dc.description.sponsorshipId | CNPq: #311404/2021-9 | |
dc.description.sponsorshipId | CNPq: #313643/2021-0 | |
dc.description.sponsorshipId | FAPEMIG: #APQ-00578-18 | |
dc.format.extent | 354-364 | |
dc.identifier | http://dx.doi.org/10.5220/0011839400003467 | |
dc.identifier.citation | International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364. | |
dc.identifier.doi | 10.5220/0011839400003467 | |
dc.identifier.issn | 2184-4992 | |
dc.identifier.scopus | 2-s2.0-85160750141 | |
dc.identifier.uri | http://hdl.handle.net/11449/248918 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Conference on Enterprise Information Systems, ICEIS - Proceedings | |
dc.source | Scopus | |
dc.subject | Classification | |
dc.subject | DeepDream Representations | |
dc.subject | Grad-CAM | |
dc.subject | Histological Images | |
dc.subject | LIME | |
dc.title | Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0001-8580-7054[1] | |
unesp.author.orcid | 0000-0001-5883-2983[4] | |
unesp.author.orcid | 0000-0002-9291-8892[5] | |
unesp.author.orcid | 0000-0003-2650-3960[6] | |
unesp.author.orcid | 0000-0001-9707-9365[7] | |
unesp.author.orcid | 0000-0003-1809-0617[8] | |
unesp.author.orcid | 0000-0001-8999-1135[9] | |
unesp.author.orcid | 0000-0003-3537-0178[10] | |
unesp.author.orcid | 0000-0002-4123-8264[11] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |