Logo do repositório

The dynamic shear properties of magnetorheological elastomers modeled by the Kelvin-Voigt model

dc.contributor.authorde Carvalho, Henrique Edno Leoncini
dc.contributor.authorFukushima, Jeferson Camargo [UNESP]
dc.contributor.authorObata, Daniel Henrique de Sousa [UNESP]
dc.contributor.authorProença, Matheus Silva [UNESP]
dc.contributor.authorde Almeida, Fernanda Carolina [UNESP]
dc.contributor.authorPaschoalini, Amarildo Tabone [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:59:29Z
dc.date.issued2024-01-01
dc.description.abstractMagneto Rheological Elastomers (MRE) are composite intelligent materials, which can substantially change their viscoelastic properties due to their high magneto-sensitivity in response to different regimes of external magnetic field. The practical application of MR materials demonstrates great potential for several areas, as indicates the increasing number of patents registered in the last decade. For the dynamic characterization of the material, an original experimental arrangement was developed, from the creation of customized algorithms to the physical assembly of equipment, with the setup consisting of basic equipment used in vibration studies. Tests were carried out with a maximum strain of below 2.5%, the sampling frequency varied between 10 – 60 Hz under a single manually controlled input stress, with average between cycles of 1.66 kPa, and 2.19% deviation. The results showed expected behaviour and coherence with similar research, showing a gain in viscoelastic properties of 239% for shear modulus and 466% for viscosity in the maximum field of 500 mT. The Kelvin-Voigt model was used to numerically obtain the material properties, the error linked to the model (adaptation) was quantified at each acquisition cycle, with an average value of 6.33%, considered satisfactory by the work group, since the application in structures requires safety coefficients with higher values. The results obtained deepen the understanding of the material’s behaviour, exploring specific input values, and also demonstrate the viability of the experimental setup and the application of MREs for the development of vibration control devices.en
dc.description.affiliationUniversidade de São Paulo Escola Politécnica Departamento de Estruturas e Geotecnia, Avenida Professor Almeida Prado Travessa 2 Nº 83, Edifício de Engenharia Civil, Cidade Universitária, SP
dc.description.affiliationUniversidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Engenharia Departamento de Engenharia Mecânica, Câmpus de Ilha Solteira, Avenida Brasil nº 56, Centro, SP
dc.description.affiliationUnespUniversidade Estadual Paulista “Júlio de Mesquita Filho” Faculdade de Engenharia Departamento de Engenharia Mecânica, Câmpus de Ilha Solteira, Avenida Brasil nº 56, Centro, SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.identifierhttp://dx.doi.org/10.1590/1517-7076-RMAT-2024-0414
dc.identifier.citationRevista Materia, v. 29, n. 4, 2024.
dc.identifier.doi10.1590/1517-7076-RMAT-2024-0414
dc.identifier.issn1517-7076
dc.identifier.scopus2-s2.0-85211159603
dc.identifier.urihttps://hdl.handle.net/11449/301829
dc.language.isoeng
dc.relation.ispartofRevista Materia
dc.sourceScopus
dc.subjectCharacterization
dc.subjectElastomer
dc.subjectIntelligent materials
dc.subjectKelvin-Voigt
dc.subjectMagnetorheological
dc.titleThe dynamic shear properties of magnetorheological elastomers modeled by the Kelvin-Voigt modelen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-6877-4537[1]
unesp.author.orcid0000-0001-6550-7118[2]
unesp.author.orcid0000-0002-3110-5097[4]
unesp.author.orcid0000-0002-6679-0231[5]
unesp.author.orcid0000-0003-1887-2678[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos