On the behaviour of zeros of Jacobi polynomials
dc.contributor.author | Dimitrov, D. K. | |
dc.contributor.author | Rodrigues, R. O. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T14:01:35Z | |
dc.date.available | 2014-05-20T14:01:35Z | |
dc.date.issued | 2002-06-01 | |
dc.description.abstract | Denote by x(n,k)(alpha, beta) and x(n,k) (lambda) = x(n,k) (lambda - 1/2, lambda - 1/2) the zeros, in decreasing order, of the Jacobi polynomial P-n((alpha, beta))(x) and of the ultraspherical (Gegenbauer) polynomial C-n(lambda)(x), respectively. The monotonicity of x(n,k)(alpha, beta) as functions of a and beta, alpha, beta > - 1, is investigated. Necessary conditions such that the zeros of P-n((a, b)) (x) are smaller (greater) than the zeros of P-n((alpha, beta))(x) are provided. A. Markov proved that x(n,k) (a, b) < x(n,k)(α, β) (x(n,k)(a, b) > x(n,k)(alpha, beta)) for every n is an element of N and each k, 1 less than or equal to k less than or equal to n if a > alpha and b < β (a < alpha and b > beta). We prove the converse statement of Markov's theorem. The question of how large the function could be such that the products f(n)(lambda) x(n,k)(lambda), k = 1,..., [n/2] are increasing functions of lambda, for lambda > - 1/2, is also discussed. Elbert and Siafarikas proved that f(n)(lambda) = (lambda + (2n(2) + 1)/ (4n + 2))(1/2) obeys this property. We establish the sharpness of their result. (C) 2002 Elsevier B.V. (USA). | en |
dc.description.affiliation | Univ Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | |
dc.format.extent | 224-239 | |
dc.identifier | http://dx.doi.org/10.1006/jath.2002.3671 | |
dc.identifier.citation | Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 116, n. 2, p. 224-239, 2002. | |
dc.identifier.doi | 10.1006/jath.2002.3671 | |
dc.identifier.file | WOS000176490200002.pdf | |
dc.identifier.issn | 0021-9045 | |
dc.identifier.lattes | 1681267716971253 | |
dc.identifier.uri | http://hdl.handle.net/11449/21732 | |
dc.identifier.wos | WOS:000176490200002 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Journal of Approximation Theory | |
dc.relation.ispartofjcr | 0.939 | |
dc.relation.ispartofsjr | 0,907 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | On the behaviour of zeros of Jacobi polynomials | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.lattes | 1681267716971253 | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- WOS000176490200002.pdf
- Tamanho:
- 141.45 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: