Logo do repositório
 

On the behaviour of zeros of Jacobi polynomials

dc.contributor.authorDimitrov, D. K.
dc.contributor.authorRodrigues, R. O.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:35Z
dc.date.available2014-05-20T14:01:35Z
dc.date.issued2002-06-01
dc.description.abstractDenote by x(n,k)(alpha, beta) and x(n,k) (lambda) = x(n,k) (lambda - 1/2, lambda - 1/2) the zeros, in decreasing order, of the Jacobi polynomial P-n((alpha, beta))(x) and of the ultraspherical (Gegenbauer) polynomial C-n(lambda)(x), respectively. The monotonicity of x(n,k)(alpha, beta) as functions of a and beta, alpha, beta > - 1, is investigated. Necessary conditions such that the zeros of P-n((a, b)) (x) are smaller (greater) than the zeros of P-n((alpha, beta))(x) are provided. A. Markov proved that x(n,k) (a, b) < x(n,k)(&alpha;, &beta;) (x(n,k)(a, b) > x(n,k)(alpha, beta)) for every n is an element of N and each k, 1 less than or equal to k less than or equal to n if a > alpha and b < &beta; (a < alpha and b > beta). We prove the converse statement of Markov's theorem. The question of how large the function could be such that the products f(n)(lambda) x(n,k)(lambda), k = 1,..., [n/2] are increasing functions of lambda, for lambda > - 1/2, is also discussed. Elbert and Siafarikas proved that f(n)(lambda) = (lambda + (2n(2) + 1)/ (4n + 2))(1/2) obeys this property. We establish the sharpness of their result. (C) 2002 Elsevier B.V. (USA).en
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil
dc.format.extent224-239
dc.identifierhttp://dx.doi.org/10.1006/jath.2002.3671
dc.identifier.citationJournal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 116, n. 2, p. 224-239, 2002.
dc.identifier.doi10.1006/jath.2002.3671
dc.identifier.fileWOS000176490200002.pdf
dc.identifier.issn0021-9045
dc.identifier.lattes1681267716971253
dc.identifier.urihttp://hdl.handle.net/11449/21732
dc.identifier.wosWOS:000176490200002
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofJournal of Approximation Theory
dc.relation.ispartofjcr0.939
dc.relation.ispartofsjr0,907
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleOn the behaviour of zeros of Jacobi polynomialsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes1681267716971253
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000176490200002.pdf
Tamanho:
141.45 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: