Sachdev-Ye-Kitaev charging advantage as a random walk on graphs
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
We investigate the charging dynamics of Sachdev-Ye-Kitaev (SYK) models as quantum batteries, highlighting their capacity to achieve quantum charging advantages. By analytically deriving the scaling of the charging power in SYK batteries, we identify the two key mechanisms underlying this advantage: the use of operators scaling extensively with system size N and the facilitation of operator delocalization by specific graph structures. A graph-theoretic framework is introduced in which the charging process is recast as a random walk on a graph, enabling a quantitative analysis of operator spreading. Our results establish rigorous conditions for the quantum advantage in SYK batteries and extend these insights to graph-based SYK models, revealing broader implications for energy storage and quantum dynamics. This work opens avenues for leveraging quantum chaos and complex network structures in optimizing energy transfer processes.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Physical Review B, v. 111, n. 7, 2025.




