Logotipo do repositório
 

Publicação:
Using model updating technique to train neural network for fault detection

dc.contributor.authorLopes, Vicente [UNESP]
dc.contributor.authorPereira, João Antonio [UNESP]
dc.contributor.authorWeber, Hans Ingo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2022-04-29T08:29:23Z
dc.date.available2022-04-29T08:29:23Z
dc.date.issued1997-01-01
dc.description.abstractVibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data.en
dc.description.affiliationDep. de Eng. Mecanica -UNESP Ilha Solteira
dc.description.affiliationFac. de Eng. Mecânica de Campinas - UNICAMP
dc.description.affiliationUnespDep. de Eng. Mecanica -UNESP Ilha Solteira
dc.identifierhttp://dx.doi.org/10.1115/DETC97/VIB-4233
dc.identifier.citationProceedings of the ASME Design Engineering Technical Conference, v. 1D-1997.
dc.identifier.doi10.1115/DETC97/VIB-4233
dc.identifier.scopus2-s2.0-85102071392
dc.identifier.urihttp://hdl.handle.net/11449/228909
dc.language.isoeng
dc.relation.ispartofProceedings of the ASME Design Engineering Technical Conference
dc.sourceScopus
dc.subjectFault classification
dc.subjectModel updating
dc.subjectNeural network
dc.subjectPredictive maintenance
dc.titleUsing model updating technique to train neural network for fault detectionen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos