Publicação: Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in a discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. We prove that if the central subsystem, i.e. the system defined between the two parallel lines, has a real center and the other subsystems have centers or saddles, then we have at least three limit cycles that appear after perturbations of the periodic annulus. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system and present a normal form for this system in order to simplify the computations.
Descrição
Palavras-chave
Limit cycles, Melnikov function, Periodic annulus, Piecewise Hamiltonian differential system
Idioma
Inglês
Como citar
International Journal of Bifurcation and Chaos, v. 32, n. 8, 2022.