Logotipo do repositório
 

Publicação:
Using wavelet sub-band and fuzzy 2-partition entropy to segment chronic lymphocytic leukemia images

dc.contributor.authorAzevedo Tosta, Thaína A.
dc.contributor.authorFaria, Paulo Rogério
dc.contributor.authorBatista, Valério Ramos
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authordo Nascimento, Marcelo Zanchetta
dc.contributor.institutionComputer Science and Cognition
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:35:10Z
dc.date.available2018-12-11T17:35:10Z
dc.date.issued2018-03-01
dc.description.abstractHistological images analysis is an important procedure to diagnose different types of cancer. One of them is the chronic lymphocytic leukemia (CLL), which can be identified by applying image segmentation techniques. This study presents an unsupervised method to segment neoplastic nuclei in CLL images. Firstly, deconvolution, histogram equalization and mean filter were applied to enhance nuclear regions. Then, a segmentation technique based on a combination of wavelet transform, fuzzy 2-partition entropy and genetic algorithm was used, followed by removal of false positive regions, and application of valley-emphasis and morphological operations. In order to evaluate the proposed algorithm H&E-stained histological images were used. In the accuracy metric, the proposed method attained more than 80%, which can surpass similar methods. This proposal presents spatial distribution that has a good consistency with a manual segmentation and lower overlapping rate than other techniques in the literature.en
dc.description.affiliationFederal University of ABC Centre of Mathematics Computer Science and Cognition, Av. dos Estados, 5001
dc.description.affiliationFederal University of Uberlândia Department of Histology and Morphology Institute of Biomedical Science, Av. Amazonas, S/N
dc.description.affiliationSão Paulo State University (UNESP) Department of Computer Science and Statistics, R. Cristóvão Colombo 2265
dc.description.affiliationFederal University of Uberlândia Faculty of Computer Science, Av. João Naves de Ávila, 2121
dc.description.affiliationUnespSão Paulo State University (UNESP) Department of Computer Science and Statistics, R. Cristóvão Colombo 2265
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCAPES: 1575210
dc.description.sponsorshipIdFAPEMIG: TEC-APQ-02885-15
dc.format.extent49-58
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2017.11.039
dc.identifier.citationApplied Soft Computing Journal, v. 64, p. 49-58.
dc.identifier.doi10.1016/j.asoc.2017.11.039
dc.identifier.file2-s2.0-85037999945.pdf
dc.identifier.issn1568-4946
dc.identifier.lattes2139053814879312
dc.identifier.scopus2-s2.0-85037999945
dc.identifier.urihttp://hdl.handle.net/11449/179434
dc.language.isoeng
dc.relation.ispartofApplied Soft Computing Journal
dc.relation.ispartofsjr1,199
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectChronic lymphocytic leukemia
dc.subjectGenetic algorithm
dc.subjectH&E-stained histological images
dc.subjectNuclei segmentation
dc.subjectWavelet transform
dc.titleUsing wavelet sub-band and fuzzy 2-partition entropy to segment chronic lymphocytic leukemia imagesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.author.orcid0000-0002-9291-8892[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85037999945.pdf
Tamanho:
4.88 MB
Formato:
Adobe Portable Document Format
Descrição: