Logotipo do repositório
 

Publicação:
Neural Network Prediction of the Trabecular Bone Mechanical Competence Parameter

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The mechanical competence parameter (MCP) has been defined to grade the trabecular bone fragility based on the principal component analysis (PCA) evaluated in terms of volume fraction, connectivity, tortuosity and Young modulus of elasticity. Using a set of 83 in vivo distal radius magnetic resonance image samples, an artificial neural network (ANN) has been trained to predict the MCP. After the learning phase, the ANN was able to predict the MCP for 20 new samples with very high accuracy. It is shown that there is a strong correlation (r = 0.99) between the MCP estimated by PCA and ANN techniques. In addition, the Bland-Altman plot provides evidence that the PCA and ANN are reasonably comparable techniques to estimate the MCP.

Descrição

Palavras-chave

Trabecular bone, mechanical competence, artificial neural network, learning, osteoporosis

Idioma

Inglês

Como citar

Vi Latin American Congress On Biomedical Engineering (claib 2014). Cham: Springer Int Publishing Ag, v. 49, p. 226-229, 2014.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação